ClC-3-depedent polarization of microglia protects against cerebral ischemic injury in mice

IF 4.8 2区 医学 Q2 IMMUNOLOGY
Meng-qing Wang , Bin Wang , Xu Yang , Qi-chun Zhang , Xu-yang Wang , Yin-feng Dong
{"title":"ClC-3-depedent polarization of microglia protects against cerebral ischemic injury in mice","authors":"Meng-qing Wang ,&nbsp;Bin Wang ,&nbsp;Xu Yang ,&nbsp;Qi-chun Zhang ,&nbsp;Xu-yang Wang ,&nbsp;Yin-feng Dong","doi":"10.1016/j.intimp.2025.114618","DOIUrl":null,"url":null,"abstract":"<div><div>Polarization of microglia has attracted great attention in ischemic stroke. Emerging evidence suggests that chloride channel 3 (ClC-3) is involved in inflammatory responses and stroke. However, the link between ClC-3 and polarization of microglia in ischemic stroke remains unclear. Herein, we found both cerebral ischemia and oxygen-glucose deprivation (OGD) induced a significant upregulation of ClC-3 in microglia. While knockdown of ClC-3 markedly increased nuclear factor kappa B (NF-κB) and CD86, and decreased CD206 in BV-2 cells under OGD conditions, facilitating them to shift into a M1-like phenotype. Furthermore, ClC-3 knockout significantly aggravated infarct volume and neurological deficits, accompanied by increased activated microglia in the peri-infarct area 1 day after cerebral ischemia. By contrast, ClC-3 overexpression obviously suppressed nuclear translocation of NF-κB, decreased OGD-induced elevated mRNA levels of TNF-α, IL-1β and IL-10, and enhanced M2-like markers (Arg1, CD206, and TREM2) in microglia, leading to alleviated infarct volume and neurological deficits. While ClC-3 overexpression could not reverse a transformation from M1-like phenotype to M2-like polarization in presence of lipopolysaccharide (LPS) and interferon gamma (IFNγ) treatment for 24 h. Collectively, our findings indicate that ClC-3-dependent polarization of microglia is critically important for protecting against cerebral ischemia injury, suggesting ClC-3 is a promising therapeutic target for ischemic stroke.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"155 ","pages":"Article 114618"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925006083","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polarization of microglia has attracted great attention in ischemic stroke. Emerging evidence suggests that chloride channel 3 (ClC-3) is involved in inflammatory responses and stroke. However, the link between ClC-3 and polarization of microglia in ischemic stroke remains unclear. Herein, we found both cerebral ischemia and oxygen-glucose deprivation (OGD) induced a significant upregulation of ClC-3 in microglia. While knockdown of ClC-3 markedly increased nuclear factor kappa B (NF-κB) and CD86, and decreased CD206 in BV-2 cells under OGD conditions, facilitating them to shift into a M1-like phenotype. Furthermore, ClC-3 knockout significantly aggravated infarct volume and neurological deficits, accompanied by increased activated microglia in the peri-infarct area 1 day after cerebral ischemia. By contrast, ClC-3 overexpression obviously suppressed nuclear translocation of NF-κB, decreased OGD-induced elevated mRNA levels of TNF-α, IL-1β and IL-10, and enhanced M2-like markers (Arg1, CD206, and TREM2) in microglia, leading to alleviated infarct volume and neurological deficits. While ClC-3 overexpression could not reverse a transformation from M1-like phenotype to M2-like polarization in presence of lipopolysaccharide (LPS) and interferon gamma (IFNγ) treatment for 24 h. Collectively, our findings indicate that ClC-3-dependent polarization of microglia is critically important for protecting against cerebral ischemia injury, suggesting ClC-3 is a promising therapeutic target for ischemic stroke.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信