NCOA3 impairs the efficacy of anti-PD-L1 therapy via HSP90α/EZH2/CXCL9 axis in colon cancer

IF 4.8 2区 医学 Q2 IMMUNOLOGY
Jiaqi Liu , Yixi Su , Chi Zhang , Haiyan Dong , Runfeng Yu , Xin Yang , Yu Tian , Yanchun Feng , Jingdan Zhang , Mengchen Shi , Chen Wang , Weiqian Li , Jun Liu , Lingyuan He , Xiangling Yang , Huanliang Liu
{"title":"NCOA3 impairs the efficacy of anti-PD-L1 therapy via HSP90α/EZH2/CXCL9 axis in colon cancer","authors":"Jiaqi Liu ,&nbsp;Yixi Su ,&nbsp;Chi Zhang ,&nbsp;Haiyan Dong ,&nbsp;Runfeng Yu ,&nbsp;Xin Yang ,&nbsp;Yu Tian ,&nbsp;Yanchun Feng ,&nbsp;Jingdan Zhang ,&nbsp;Mengchen Shi ,&nbsp;Chen Wang ,&nbsp;Weiqian Li ,&nbsp;Jun Liu ,&nbsp;Lingyuan He ,&nbsp;Xiangling Yang ,&nbsp;Huanliang Liu","doi":"10.1016/j.intimp.2025.114579","DOIUrl":null,"url":null,"abstract":"<div><div>Immune checkpoint inhibitors (ICIs) have revolutionized colon cancer treatment, but their efficacy is largely restricted by the limited presence of CD8<sup>+</sup> cytotoxic T lymphocytes (CTLs). However, the specific genetic alterations that impact the CD8<sup>+</sup> CTL infiltration in colon cancer remain poorly understood. Here, we analyzed clinical and multi-omics data from the Memorial Sloan-Kettering Cancer Center (MSKCC) ICIs-treated and The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) cohorts to screen the key mutations that may influence the efficacy of immunotherapy. We found that patients with NCOA3 mutations exhibit better response to immunotherapy and higher CD8<sup>+</sup> CTL infiltration. In vitro and in vivo experiments revealed that mutant NCOA3 increases the efficacy of anti-PD-L1 and CD8<sup>+</sup> CTL recruitment by upregulating C-X-C motif chemokine ligand 9 (CXCL9), which is dependent on its impaired intrinsic histone acetyltransferase activity. Mechanistically, wild-type NCOA3 as histone acetyltransferase upregulates Heat shock protein 90 alpha (HSP90α) by enhancing histone H3 lysine 27 acetylation (H3K27ac) at its promoter region. Increased HSP90α stabilizes Enhancer of zeste homolog 2 (EZH2), which then increase the histone H3 lysine 27 trimethylation (H3K27me3) at the CXCL9 promoter region, thereby suppressing the expression of CXCL9. Targeted inhibition of NCOA3 by small molecular inhibitor SI-2 improves the efficacy of PD-L1 blockade therapy. NCOA3 could serve as a novel biomarker and potential target to improve the efficacy of immunotherapy.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"155 ","pages":"Article 114579"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925005697","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune checkpoint inhibitors (ICIs) have revolutionized colon cancer treatment, but their efficacy is largely restricted by the limited presence of CD8+ cytotoxic T lymphocytes (CTLs). However, the specific genetic alterations that impact the CD8+ CTL infiltration in colon cancer remain poorly understood. Here, we analyzed clinical and multi-omics data from the Memorial Sloan-Kettering Cancer Center (MSKCC) ICIs-treated and The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) cohorts to screen the key mutations that may influence the efficacy of immunotherapy. We found that patients with NCOA3 mutations exhibit better response to immunotherapy and higher CD8+ CTL infiltration. In vitro and in vivo experiments revealed that mutant NCOA3 increases the efficacy of anti-PD-L1 and CD8+ CTL recruitment by upregulating C-X-C motif chemokine ligand 9 (CXCL9), which is dependent on its impaired intrinsic histone acetyltransferase activity. Mechanistically, wild-type NCOA3 as histone acetyltransferase upregulates Heat shock protein 90 alpha (HSP90α) by enhancing histone H3 lysine 27 acetylation (H3K27ac) at its promoter region. Increased HSP90α stabilizes Enhancer of zeste homolog 2 (EZH2), which then increase the histone H3 lysine 27 trimethylation (H3K27me3) at the CXCL9 promoter region, thereby suppressing the expression of CXCL9. Targeted inhibition of NCOA3 by small molecular inhibitor SI-2 improves the efficacy of PD-L1 blockade therapy. NCOA3 could serve as a novel biomarker and potential target to improve the efficacy of immunotherapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信