Hongtao Duan , Rui Zhang , Aiminuer Asikaer , Liang Pan , Shui Wang , Kuilong Huang , Deshuai Lou , Yuanqiang Wang , Zhihua Lin , Yan Shen
{"title":"Nicotinamide mononucleotide ameliorates hypertriglyceridemia pancreatitis via NAD+/SIRT1-mediated TXNIP suppression and NOTCH pathway for accelerated repair-associated processes","authors":"Hongtao Duan , Rui Zhang , Aiminuer Asikaer , Liang Pan , Shui Wang , Kuilong Huang , Deshuai Lou , Yuanqiang Wang , Zhihua Lin , Yan Shen","doi":"10.1016/j.intimp.2025.114620","DOIUrl":null,"url":null,"abstract":"<div><div><strong>Background & Aims:</strong> Acute pancreatitis (AP) is a life-threatening condition, and hypertriglyceridemia (HTG) is recognized as a factor exacerbating AP and impeding pancreatic regeneration. Nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of nicotinamide adenine dinucleotide (NAD<sup>+</sup>), is extensively utilized to restore NAD<sup>+</sup> levels. However, the impact of NMN on HTG-AP has not been previously addressed, which prompted our investigation into its effects and underlying mechanisms in this study.</div><div><strong>Methods & Results:</strong> Here, through bioinformatics analysis and in vivo experiments, we identified abnormalities in the thioredoxin system. In vitro studies revealed that NMN rescued oleic acid (OA)- and palmitic acid (PA)-induced mitochondrial dysfunction and cellular injury in pancreatic acinar cells by suppressing thioredoxin-interacting protein (TXNIP) through NAD<sup>+</sup>/sirtuin 1 (SIRT1) signaling. Repeated administration of NMN significantly ameliorated P407 and caerulein (CER)-induced pancreatic injury and dysfunction in mice. Consistently, NMN exhibited the potential to reduce inflammatory responses, lower serum lipid levels, and mitigate the accumulation of reactive oxygen species (ROS). More importantly, sustained NMN treatment inhibited the NOTCH pathway and promoted M2-type macrophage dominance during the pancreatic repair phase, influencing early or late macrophage polarization, which significantly enhanced inflammation resolution. As expected, in vitro models using mouse bone marrow-derived macrophage (BMDM), RAW 264.7, and THP-1 cells confirmed that NMN influences macrophage phenotype through the NOTCH pathway.</div><div><strong>Conclusions:</strong> Therefore, NMN ameliorates pancreatic acinar cell injury via NAD<sup>+</sup>/SIRT1-mediated TXNIP suppression and may influence macrophage polarization by inhibiting NOTCH activation, offering a novel therapeutic strategy for the treatment and repair of HTG-AP.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"155 ","pages":"Article 114620"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925006101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & Aims: Acute pancreatitis (AP) is a life-threatening condition, and hypertriglyceridemia (HTG) is recognized as a factor exacerbating AP and impeding pancreatic regeneration. Nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of nicotinamide adenine dinucleotide (NAD+), is extensively utilized to restore NAD+ levels. However, the impact of NMN on HTG-AP has not been previously addressed, which prompted our investigation into its effects and underlying mechanisms in this study.
Methods & Results: Here, through bioinformatics analysis and in vivo experiments, we identified abnormalities in the thioredoxin system. In vitro studies revealed that NMN rescued oleic acid (OA)- and palmitic acid (PA)-induced mitochondrial dysfunction and cellular injury in pancreatic acinar cells by suppressing thioredoxin-interacting protein (TXNIP) through NAD+/sirtuin 1 (SIRT1) signaling. Repeated administration of NMN significantly ameliorated P407 and caerulein (CER)-induced pancreatic injury and dysfunction in mice. Consistently, NMN exhibited the potential to reduce inflammatory responses, lower serum lipid levels, and mitigate the accumulation of reactive oxygen species (ROS). More importantly, sustained NMN treatment inhibited the NOTCH pathway and promoted M2-type macrophage dominance during the pancreatic repair phase, influencing early or late macrophage polarization, which significantly enhanced inflammation resolution. As expected, in vitro models using mouse bone marrow-derived macrophage (BMDM), RAW 264.7, and THP-1 cells confirmed that NMN influences macrophage phenotype through the NOTCH pathway.
Conclusions: Therefore, NMN ameliorates pancreatic acinar cell injury via NAD+/SIRT1-mediated TXNIP suppression and may influence macrophage polarization by inhibiting NOTCH activation, offering a novel therapeutic strategy for the treatment and repair of HTG-AP.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.