{"title":"Assessing atmospheric particulate matters and their removal potential through roadside trees in Chattogram city, Bangladesh","authors":"Nayeem Uddin Emon , Chinmoy Sarkar Anik , Forkan Ahamed Rubel , Sahadeb Chandra Majumder , Tapan Kumar Nath , Shyamal Karmakar , Tarit Kumar Baul","doi":"10.1016/j.apr.2025.102535","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric particulate matter (PM) affects urban air quality and poses significant health risks. In this study, we measured ambient PM levels and heavy metal concentrations at six vegetated and one non-vegetated (control) roadside locations in Chattogram City, Bangladesh. Using a portable air quality sensor, we assessed ambient PM<sub>0.5</sub> and PM<sub>2.5</sub> concentrations every 15 days over the course of one year and found that the mean concentrations of PM<sub>0</sub>.<sub>5</sub> and PM<sub>2</sub>.<sub>5</sub> in the control site were significantly higher (<em>p</em> ≤ 0.05) than those at the vegetated roadsides. We also investigated whether roadside trees can effectively remove PM and collected 84 leaf samples from seven tree species each month to quantify PM deposition on the leaves. PM concentrations in the air and on the leaves were higher during the dry season compared to the rainy season. Further analysis of meteorological factors revealed that PM accumulation on the leaves decreased with high temperature, wind speed, and precipitation. These findings suggest that meteorological conditions play a crucial role in PM dynamics, influencing both airborne concentration and accumulation on leaves. Besides, tree species and leaf characteristics play a substantial role in PM accumulation on the leaves. Copper and zinc were in the accumulated PM along all roadsides, indicating the possibility of heavy metal contamination. We propose planting roadside trees with rhomboid, elliptical, rough, and simple leaves to enhance the removal of PM and other contaminants through deposition.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 7","pages":"Article 102535"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001370","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric particulate matter (PM) affects urban air quality and poses significant health risks. In this study, we measured ambient PM levels and heavy metal concentrations at six vegetated and one non-vegetated (control) roadside locations in Chattogram City, Bangladesh. Using a portable air quality sensor, we assessed ambient PM0.5 and PM2.5 concentrations every 15 days over the course of one year and found that the mean concentrations of PM0.5 and PM2.5 in the control site were significantly higher (p ≤ 0.05) than those at the vegetated roadsides. We also investigated whether roadside trees can effectively remove PM and collected 84 leaf samples from seven tree species each month to quantify PM deposition on the leaves. PM concentrations in the air and on the leaves were higher during the dry season compared to the rainy season. Further analysis of meteorological factors revealed that PM accumulation on the leaves decreased with high temperature, wind speed, and precipitation. These findings suggest that meteorological conditions play a crucial role in PM dynamics, influencing both airborne concentration and accumulation on leaves. Besides, tree species and leaf characteristics play a substantial role in PM accumulation on the leaves. Copper and zinc were in the accumulated PM along all roadsides, indicating the possibility of heavy metal contamination. We propose planting roadside trees with rhomboid, elliptical, rough, and simple leaves to enhance the removal of PM and other contaminants through deposition.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.