DDX24 inhibits clear cell renal cell carcinoma progression by directly regulating AKR1B10

IF 4.4 2区 生物学 Q2 CELL BIOLOGY
Zhijun Li , Xinglin Li , Min Yang , Xiaofeng Pei , Taotao Que , Jianzhong Xian , Hongjun Jin
{"title":"DDX24 inhibits clear cell renal cell carcinoma progression by directly regulating AKR1B10","authors":"Zhijun Li ,&nbsp;Xinglin Li ,&nbsp;Min Yang ,&nbsp;Xiaofeng Pei ,&nbsp;Taotao Que ,&nbsp;Jianzhong Xian ,&nbsp;Hongjun Jin","doi":"10.1016/j.cellsig.2025.111804","DOIUrl":null,"url":null,"abstract":"<div><div>Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies worldwide, but only a few markers have been used to diagnose ccRCC. Here, we report the critical roles of DEAD-box helicase 24 (DDX24), a member of the DEAD-box RNA helicase family, in ccRCC. The DDX24 expression level and its prognostic value were initially detected in public data and then verified in a ccRCC tissue microarray. Subsequent <em>in vitro</em> and <em>in vivo</em> experiments were conducted on representative ccRCC cell lines. RNA sequencing and experimental studies were performed to explore the underlying mechanisms, and the associations between DDX24 expression and immune characteristics were evaluated. DDX24 levels were significantly lower in ccRCC tissues and negatively correlated with advanced clinical stage and overall survival. Functional analyses showed that DDX24 overexpression inhibited ccRCC cell proliferation, migration, and invasion, while DDX24 knockdown enhanced these phenotypes. Mechanistic studies revealed that DDX24 regulated the expression of aldo-keto reductase family 1 member B10 (AKR1B10) and epithelial-mesenchymal transition (EMT)-related transcription factors. Given the low expression of DDX24, ccRCC patients may benefit more from immunotherapies. In conclusion, these findings demonstrate that DDX24 suppresses ccRCC progression through direct regulation of AKR1B10, potentially mediated by EMT-related pathways, which provides potential therapeutic targets for ccRCC.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"132 ","pages":"Article 111804"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825002177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies worldwide, but only a few markers have been used to diagnose ccRCC. Here, we report the critical roles of DEAD-box helicase 24 (DDX24), a member of the DEAD-box RNA helicase family, in ccRCC. The DDX24 expression level and its prognostic value were initially detected in public data and then verified in a ccRCC tissue microarray. Subsequent in vitro and in vivo experiments were conducted on representative ccRCC cell lines. RNA sequencing and experimental studies were performed to explore the underlying mechanisms, and the associations between DDX24 expression and immune characteristics were evaluated. DDX24 levels were significantly lower in ccRCC tissues and negatively correlated with advanced clinical stage and overall survival. Functional analyses showed that DDX24 overexpression inhibited ccRCC cell proliferation, migration, and invasion, while DDX24 knockdown enhanced these phenotypes. Mechanistic studies revealed that DDX24 regulated the expression of aldo-keto reductase family 1 member B10 (AKR1B10) and epithelial-mesenchymal transition (EMT)-related transcription factors. Given the low expression of DDX24, ccRCC patients may benefit more from immunotherapies. In conclusion, these findings demonstrate that DDX24 suppresses ccRCC progression through direct regulation of AKR1B10, potentially mediated by EMT-related pathways, which provides potential therapeutic targets for ccRCC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信