Y-box binding protein 1: A critical target for understanding and treating cardiovascular disease

IF 4.4 2区 生物学 Q2 CELL BIOLOGY
Zixuan Liu , Hongjie Wang , Lei Dai , Hesong Zeng , Xiaodan Zhong
{"title":"Y-box binding protein 1: A critical target for understanding and treating cardiovascular disease","authors":"Zixuan Liu ,&nbsp;Hongjie Wang ,&nbsp;Lei Dai ,&nbsp;Hesong Zeng ,&nbsp;Xiaodan Zhong","doi":"10.1016/j.cellsig.2025.111797","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVDs) remain a significant public health burden, characterized by escalating morbidity and mortality rates and demanding novel therapeutic approaches. Cold shock protein Y-box binding protein 1 (YB-1), a highly conserved RNA/DNA-binding protein, has emerged as a pivotal regulator in various pathophysiological processes, including CVDs. YB-1 exerts pleiotropic functions by modulating gene transcription, pre-mRNA splicing, mRNA translation, and stability. The expression and function of YB-1 are intricately regulated by its subcellular localization, post-translational modifications, upstream regulatory signals. YB-1 plays a multifaceted role in CVDs, influencing inflammation, oxidative stress, cell proliferation, apoptosis, phenotypic switching of smooth muscle cells, and mitochondrial dysfunction. However, the regulation of YB-1 expression and function in CVDs is complex and context-dependent, exhibiting divergent effects even in the same disease across different cell types or at disease stages. This review comprehensively explores the structure, regulation, and functional significance of YB-1 in CVDs. We delve into the transcriptional and translational control mechanisms of YB-1, as well as its post-translational modifications. Furthermore, we elucidate the upstream signaling pathways that influence YB-1 expression, with a particular emphasis on non-coding RNAs and specific upstream molecules. Finally, we systematically examine the role of YB-1 in CVDs, summarizing its expression patterns, regulatory mechanisms, and therapeutic potential as a promising target for novel therapeutic interventions. By providing a comprehensive overview of YB-1's involvement in CVDs, this review aims to stimulate further research and facilitate the development of targeted therapies to improve cardiovascular health.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"132 ","pages":"Article 111797"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825002104","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) remain a significant public health burden, characterized by escalating morbidity and mortality rates and demanding novel therapeutic approaches. Cold shock protein Y-box binding protein 1 (YB-1), a highly conserved RNA/DNA-binding protein, has emerged as a pivotal regulator in various pathophysiological processes, including CVDs. YB-1 exerts pleiotropic functions by modulating gene transcription, pre-mRNA splicing, mRNA translation, and stability. The expression and function of YB-1 are intricately regulated by its subcellular localization, post-translational modifications, upstream regulatory signals. YB-1 plays a multifaceted role in CVDs, influencing inflammation, oxidative stress, cell proliferation, apoptosis, phenotypic switching of smooth muscle cells, and mitochondrial dysfunction. However, the regulation of YB-1 expression and function in CVDs is complex and context-dependent, exhibiting divergent effects even in the same disease across different cell types or at disease stages. This review comprehensively explores the structure, regulation, and functional significance of YB-1 in CVDs. We delve into the transcriptional and translational control mechanisms of YB-1, as well as its post-translational modifications. Furthermore, we elucidate the upstream signaling pathways that influence YB-1 expression, with a particular emphasis on non-coding RNAs and specific upstream molecules. Finally, we systematically examine the role of YB-1 in CVDs, summarizing its expression patterns, regulatory mechanisms, and therapeutic potential as a promising target for novel therapeutic interventions. By providing a comprehensive overview of YB-1's involvement in CVDs, this review aims to stimulate further research and facilitate the development of targeted therapies to improve cardiovascular health.
Y-box 结合蛋白 1:了解和治疗心血管疾病的关键靶点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信