Xiaoying Huang , Minghao Qin , Mengjie Fang , Zipei Wang , Chaoen Hu , Tongyu Zhao , Zhuyuan Qin , Haishan Zhu , Ling Wu , Guowei Yu , Francesco De Cobelli , Xuebin Xie , Diego Palumbo , Jie Tian , Di Dong
{"title":"The application of artificial intelligence in upper gastrointestinal cancers","authors":"Xiaoying Huang , Minghao Qin , Mengjie Fang , Zipei Wang , Chaoen Hu , Tongyu Zhao , Zhuyuan Qin , Haishan Zhu , Ling Wu , Guowei Yu , Francesco De Cobelli , Xuebin Xie , Diego Palumbo , Jie Tian , Di Dong","doi":"10.1016/j.jncc.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>Upper gastrointestinal cancers, mainly comprising esophageal and gastric cancers, are among the most prevalent cancers worldwide. There are many new cases of upper gastrointestinal cancers annually, and the survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, and effective prognosis are crucial for patients with upper gastrointestinal cancers. In recent years, an increasing number of studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related to upper gastrointestinal cancers. These studies mainly focus on four aspects: screening, diagnosis, treatment, and prognosis. In this review, we focus on the application of AI technology in clinical tasks related to upper gastrointestinal cancers. Firstly, the basic application pipelines of radiomics and deep learning in medical image analysis were introduced. Furthermore, we separately reviewed the application of AI technology in the aforementioned aspects for both esophageal and gastric cancers. Finally, the current limitations and challenges faced in the field of upper gastrointestinal cancers were summarized, and explorations were conducted on the selection of AI algorithms in various scenarios, the popularization of early screening, the clinical applications of AI, and large multimodal models.</div></div>","PeriodicalId":73987,"journal":{"name":"Journal of the National Cancer Center","volume":"5 2","pages":"Pages 113-131"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the National Cancer Center","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266700542400125X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Upper gastrointestinal cancers, mainly comprising esophageal and gastric cancers, are among the most prevalent cancers worldwide. There are many new cases of upper gastrointestinal cancers annually, and the survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, and effective prognosis are crucial for patients with upper gastrointestinal cancers. In recent years, an increasing number of studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related to upper gastrointestinal cancers. These studies mainly focus on four aspects: screening, diagnosis, treatment, and prognosis. In this review, we focus on the application of AI technology in clinical tasks related to upper gastrointestinal cancers. Firstly, the basic application pipelines of radiomics and deep learning in medical image analysis were introduced. Furthermore, we separately reviewed the application of AI technology in the aforementioned aspects for both esophageal and gastric cancers. Finally, the current limitations and challenges faced in the field of upper gastrointestinal cancers were summarized, and explorations were conducted on the selection of AI algorithms in various scenarios, the popularization of early screening, the clinical applications of AI, and large multimodal models.