Sihan Ma , Deng Long , Xinglin Yu , Wentao Li , Guang Ran
{"title":"Photocatalysts designed using nuclear energy radioactive technology for energy conversion and environmental remediation","authors":"Sihan Ma , Deng Long , Xinglin Yu , Wentao Li , Guang Ran","doi":"10.1016/j.mser.2025.100992","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of nuclear energy technology and photocatalysts offers a potent solution to address pressing environmental and energy challenges. Numerous remarkable research endeavors have underscored the exceptional benefits of nuclear technology in the creation and utilization of eco-friendly and energy-conversion photocatalysts, paving a dependable and promising path for the green and secure deployment of nuclear energy. Despite nuclear energy technology garnering extensive research attention and yielding substantial findings, a comprehensive review of its applications, particularly in the realm of the regulated synthesis and modification of photocatalysts, remains inadequate. This barrier hinders the swift progression of nuclear technology in the environmental and energy application fields. Herein, this paper delves into the fundamentals of nuclear technology, encompassing the production of nuclear energy, its diverse applications, and the process of modifying energy and environmental photocatalysts. Emphasizing the mechanistic insights into the radiation effects induced during the application of nuclear technology on photocatalysts modification, offering insights for the innovation of efficient environmental energy catalysts. Furthermore, to foster a deeper understanding of nuclear energy's application advantages, providing a strong impetus for accelerating the development of photocatalytic technology applications driven by nuclear energy and promoting the exploration of energy conversion and environmental treatment photocatalysts.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"164 ","pages":"Article 100992"},"PeriodicalIF":31.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000695","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of nuclear energy technology and photocatalysts offers a potent solution to address pressing environmental and energy challenges. Numerous remarkable research endeavors have underscored the exceptional benefits of nuclear technology in the creation and utilization of eco-friendly and energy-conversion photocatalysts, paving a dependable and promising path for the green and secure deployment of nuclear energy. Despite nuclear energy technology garnering extensive research attention and yielding substantial findings, a comprehensive review of its applications, particularly in the realm of the regulated synthesis and modification of photocatalysts, remains inadequate. This barrier hinders the swift progression of nuclear technology in the environmental and energy application fields. Herein, this paper delves into the fundamentals of nuclear technology, encompassing the production of nuclear energy, its diverse applications, and the process of modifying energy and environmental photocatalysts. Emphasizing the mechanistic insights into the radiation effects induced during the application of nuclear technology on photocatalysts modification, offering insights for the innovation of efficient environmental energy catalysts. Furthermore, to foster a deeper understanding of nuclear energy's application advantages, providing a strong impetus for accelerating the development of photocatalytic technology applications driven by nuclear energy and promoting the exploration of energy conversion and environmental treatment photocatalysts.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.