Xiaorui Zhang, Yi Tao, Xuanhe Yang, Shuai Wang, Gaofeng Pan, Jianping An
{"title":"Cooperative sensing performance of multi-satellite uplink systems","authors":"Xiaorui Zhang, Yi Tao, Xuanhe Yang, Shuai Wang, Gaofeng Pan, Jianping An","doi":"10.1016/j.phycom.2025.102678","DOIUrl":null,"url":null,"abstract":"<div><div>As global communication needs continue to grow, the scarcity of spectrum resources and the increase in interference underscore the importance of cognitive satellite communication systems. However, existing research has notable shortcomings in addressing uplink multi-satellite cooperative sensing performance in highly dynamic scenarios, particularly regarding multi-node cooperative detection performance while considering factors such as attenuation. Furthermore, there is a lack of in-depth discussion concerning analysis and fusion strategy design. To address these challenges, this paper proposes a method that combines Monte Carlo simulation with theoretical analysis, taking into account signal attenuation, distance uncertainty, and noise uncertainty, to conduct a comprehensive study of uplink multi-satellite cooperative sensing performance. Specifically, we employed soft fusion technology using Square Law Combining (SLC) and hard fusion technology utilizing various rules and conducted simulation experiments. The research results indicate that different fusion methods can both enhance and diminish signal detection performance. The analysis and simulation results presented in this paper validate the effectiveness of the proposed method, offering significant references for the selection and design of multi-node cooperative detection strategies across various scenarios involving low Earth orbit satellite constellations.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"71 ","pages":"Article 102678"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725000813","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As global communication needs continue to grow, the scarcity of spectrum resources and the increase in interference underscore the importance of cognitive satellite communication systems. However, existing research has notable shortcomings in addressing uplink multi-satellite cooperative sensing performance in highly dynamic scenarios, particularly regarding multi-node cooperative detection performance while considering factors such as attenuation. Furthermore, there is a lack of in-depth discussion concerning analysis and fusion strategy design. To address these challenges, this paper proposes a method that combines Monte Carlo simulation with theoretical analysis, taking into account signal attenuation, distance uncertainty, and noise uncertainty, to conduct a comprehensive study of uplink multi-satellite cooperative sensing performance. Specifically, we employed soft fusion technology using Square Law Combining (SLC) and hard fusion technology utilizing various rules and conducted simulation experiments. The research results indicate that different fusion methods can both enhance and diminish signal detection performance. The analysis and simulation results presented in this paper validate the effectiveness of the proposed method, offering significant references for the selection and design of multi-node cooperative detection strategies across various scenarios involving low Earth orbit satellite constellations.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.