Giulia Quagliata , Andrea Ferrucci , Miriam Marín-Sanz , Francisco Barro , Gianpiero Vigani , Stefania Astolfi
{"title":"Ionome profiling discriminate genotype-dependent responses to drought in durum wheat","authors":"Giulia Quagliata , Andrea Ferrucci , Miriam Marín-Sanz , Francisco Barro , Gianpiero Vigani , Stefania Astolfi","doi":"10.1016/j.jplph.2025.154487","DOIUrl":null,"url":null,"abstract":"<div><div>Low-resource environments, such as dry or infertile soils, result in limited plant growth and development, which in turn constrain crop productivity. Water shortage is a significant threat to agricultural productivity all over the world. Drought may also affect plant nutrient uptake and assimilation capability causing nutrient deficiencies even in fertilized fields. Durum wheat is an important staple food crop for ensuring food security in the Mediterranean area, which is increasingly subjected to periods of severe drought due to global changes. Thus, identifying wheat cultivars/genotypes able to cope with suboptimal water, and with unbalanced nutrient availability deriving from drought is crucial to mitigate climate change's adverse effects on agriculture.</div><div>In this study, a detailed analysis of the phenome, including biomass production, proline production, and characterization of root system architecture, and the ionome, was performed on a panel of 15 Triticum turgidum genotypes, differing for drought tolerance, in order to understand the genotype-specific physiological responses to drought and to identify those genotypes characterised by a positive correlation between ion homeostasis and drought response. The characterization of root system architecture helped our understanding of the morphological responses of wheat plants to drought. Our findings demonstrated that drought exposure for 7 days significantly impacted the ionomic profiles of most genotypes in both shoot and root tissues, albeit to varying degrees. The Lcye A<sup>−</sup>B<sup>-</sup> genotype showed the highest accumulation efficiency for most nutrients in shoots, while Bulel tritordeum and Karim in roots. It is also important to understand how micronutrients interact with each other and with macronutrients. Thus, we performed a nutrient correlation network analysis, which showed that drought altered the interactions between nutrients in most genotypes. These findings underscore the importance of understanding the mechanisms regulating nutrient homeostasis, as these mechanisms can either mitigate or exacerbate the impact of drought stress.</div><div>Understanding the interplay between ionomic profiles and environmental conditions can provide valuable insights into developing more resilient crops that can thrive in challenging environments, ultimately contributing to global food security in the face of climate change.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"308 ","pages":"Article 154487"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000690","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Low-resource environments, such as dry or infertile soils, result in limited plant growth and development, which in turn constrain crop productivity. Water shortage is a significant threat to agricultural productivity all over the world. Drought may also affect plant nutrient uptake and assimilation capability causing nutrient deficiencies even in fertilized fields. Durum wheat is an important staple food crop for ensuring food security in the Mediterranean area, which is increasingly subjected to periods of severe drought due to global changes. Thus, identifying wheat cultivars/genotypes able to cope with suboptimal water, and with unbalanced nutrient availability deriving from drought is crucial to mitigate climate change's adverse effects on agriculture.
In this study, a detailed analysis of the phenome, including biomass production, proline production, and characterization of root system architecture, and the ionome, was performed on a panel of 15 Triticum turgidum genotypes, differing for drought tolerance, in order to understand the genotype-specific physiological responses to drought and to identify those genotypes characterised by a positive correlation between ion homeostasis and drought response. The characterization of root system architecture helped our understanding of the morphological responses of wheat plants to drought. Our findings demonstrated that drought exposure for 7 days significantly impacted the ionomic profiles of most genotypes in both shoot and root tissues, albeit to varying degrees. The Lcye A−B- genotype showed the highest accumulation efficiency for most nutrients in shoots, while Bulel tritordeum and Karim in roots. It is also important to understand how micronutrients interact with each other and with macronutrients. Thus, we performed a nutrient correlation network analysis, which showed that drought altered the interactions between nutrients in most genotypes. These findings underscore the importance of understanding the mechanisms regulating nutrient homeostasis, as these mechanisms can either mitigate or exacerbate the impact of drought stress.
Understanding the interplay between ionomic profiles and environmental conditions can provide valuable insights into developing more resilient crops that can thrive in challenging environments, ultimately contributing to global food security in the face of climate change.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.