Global dynamics of a degenerate reaction-diffusion model for Brucellosis transmission

IF 2.4 2区 数学 Q1 MATHEMATICS
Shu-Min Liu , Shi Zhao , Zhenguo Bai , Yijun Lou , Gui-Quan Sun , Li Li
{"title":"Global dynamics of a degenerate reaction-diffusion model for Brucellosis transmission","authors":"Shu-Min Liu ,&nbsp;Shi Zhao ,&nbsp;Zhenguo Bai ,&nbsp;Yijun Lou ,&nbsp;Gui-Quan Sun ,&nbsp;Li Li","doi":"10.1016/j.jde.2025.113284","DOIUrl":null,"url":null,"abstract":"<div><div>The effective control of brucellosis is critically important for global public health and the economy. This paper presents a novel degenerate reaction-diffusion model for brucellosis, incorporating spatiotemporal heterogeneity, human behavior dynamics and a multi-stage latent period. The well-posedness of the model is rigorously analyzed, and the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is derived via the next-generation operator method. A threshold result based on the <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is established: global asymptotic stability of the disease-free equilibrium is proven for <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span>, while disease persistence is rigorously demonstrated for <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span>. The global asymptotic stability of the disease-free equilibrium for <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> is further proven under spatial heterogeneity. Furthermore, the global attractiveness of the endemic equilibrium under spatiotemporal homogeneity is established through the construction of a Lyapunov function. Numerical simulations identify critical drivers of brucellosis transmission, including human behavior adaptation, latent period staging, and grazing intensity, providing significant insights for brucellosis control strategies.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"437 ","pages":"Article 113284"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003110","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The effective control of brucellosis is critically important for global public health and the economy. This paper presents a novel degenerate reaction-diffusion model for brucellosis, incorporating spatiotemporal heterogeneity, human behavior dynamics and a multi-stage latent period. The well-posedness of the model is rigorously analyzed, and the basic reproduction number R0 is derived via the next-generation operator method. A threshold result based on the R0 is established: global asymptotic stability of the disease-free equilibrium is proven for R0<1, while disease persistence is rigorously demonstrated for R0>1. The global asymptotic stability of the disease-free equilibrium for R0=1 is further proven under spatial heterogeneity. Furthermore, the global attractiveness of the endemic equilibrium under spatiotemporal homogeneity is established through the construction of a Lyapunov function. Numerical simulations identify critical drivers of brucellosis transmission, including human behavior adaptation, latent period staging, and grazing intensity, providing significant insights for brucellosis control strategies.
布鲁氏菌病传播的退化反应扩散模型的全球动力学
有效控制布鲁氏菌病对全球公共卫生和经济至关重要。本文提出了一种新的布鲁氏菌病退化反应扩散模型,该模型结合了时空异质性、人类行为动力学和多阶段潜伏期。对模型的适定性进行了严格的分析,并采用新一代算子法推导了基本再现数R0。建立了基于R0的阈值结果:证明了R0>;1的无病平衡的全局渐近稳定性,并严格证明了R0>;1的疾病持续性。进一步证明了R0=1时无病平衡点在空间异质性下的全局渐近稳定性。此外,通过构造李雅普诺夫函数,建立了时空同质性条件下地方性均衡的全球吸引力。数值模拟确定了布鲁氏菌病传播的关键驱动因素,包括人类行为适应、潜伏期分期和放牧强度,为布鲁氏菌病控制策略提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信