A multicenter pragmatic implementation study of AI-ECG-based clinical decision support software to identify low LVEF: Clinical trial design and methods

IF 1.3 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Francisco Lopez-Jimenez , Heather M. Alger , Zachi I. Attia , Barbara Barry , Ranee Chatterjee , Rowena Dolor , Paul A. Friedman , Stephen J. Greene , Jason Greenwood , Vinay Gundurao , Sarah Hackett , Prerak Jain , Anja Kinaszczuk , Ketan Mehta , Jason O'Grady , Ambarish Pandey , Christopher Pullins , Arjun R. Puranik , Mohan Krishna Ranganathan , David Rushlow , Samir Awasthi
{"title":"A multicenter pragmatic implementation study of AI-ECG-based clinical decision support software to identify low LVEF: Clinical trial design and methods","authors":"Francisco Lopez-Jimenez ,&nbsp;Heather M. Alger ,&nbsp;Zachi I. Attia ,&nbsp;Barbara Barry ,&nbsp;Ranee Chatterjee ,&nbsp;Rowena Dolor ,&nbsp;Paul A. Friedman ,&nbsp;Stephen J. Greene ,&nbsp;Jason Greenwood ,&nbsp;Vinay Gundurao ,&nbsp;Sarah Hackett ,&nbsp;Prerak Jain ,&nbsp;Anja Kinaszczuk ,&nbsp;Ketan Mehta ,&nbsp;Jason O'Grady ,&nbsp;Ambarish Pandey ,&nbsp;Christopher Pullins ,&nbsp;Arjun R. Puranik ,&nbsp;Mohan Krishna Ranganathan ,&nbsp;David Rushlow ,&nbsp;Samir Awasthi","doi":"10.1016/j.ahjo.2025.100528","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.</div></div><div><h3>Methods</h3><div>AIM ECG-AI is a multicenter, cluster-randomized trial recruiting and randomizing clinicians to receive access to the CDSS (intervention) or provide usual care. Clinicians are recruited from 5 geographically distinct health systems and clustered at the care team level. AIM ECG-AI will evaluate clinical care provided during &gt;32,000 eligible clinical encounters with adult patients with no history of low LVEF and who have a digital ECG documented within the health system's EHR, with 90 day follow up.</div></div><div><h3>Results</h3><div>Study data includes clinician surveys, study software metrics, and EHR data as a read-out for clinician decision-making. AIM ECG-AI will evaluate detection of left ventricular ejection fraction ≤40 % by echocardiography, with exploratory endpoints. Subgroup analyses will evaluate the health system, clinician, and patient-level characteristics associated with outcomes (<span><span>NCT05867407</span><svg><path></path></svg></span>).</div></div><div><h3>Conclusion</h3><div>AIM ECG-AI is the first multisite clinical evaluation of an EHR-integrated, point-of-care CDSS to provide ECG-AI results in the clinical workflow. The findings will provide valuable insights for clinically focused software design to bring AI into routine clinical practice.</div></div>","PeriodicalId":72158,"journal":{"name":"American heart journal plus : cardiology research and practice","volume":"54 ","pages":"Article 100528"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American heart journal plus : cardiology research and practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266660222500031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.

Methods

AIM ECG-AI is a multicenter, cluster-randomized trial recruiting and randomizing clinicians to receive access to the CDSS (intervention) or provide usual care. Clinicians are recruited from 5 geographically distinct health systems and clustered at the care team level. AIM ECG-AI will evaluate clinical care provided during >32,000 eligible clinical encounters with adult patients with no history of low LVEF and who have a digital ECG documented within the health system's EHR, with 90 day follow up.

Results

Study data includes clinician surveys, study software metrics, and EHR data as a read-out for clinician decision-making. AIM ECG-AI will evaluate detection of left ventricular ejection fraction ≤40 % by echocardiography, with exploratory endpoints. Subgroup analyses will evaluate the health system, clinician, and patient-level characteristics associated with outcomes (NCT05867407).

Conclusion

AIM ECG-AI is the first multisite clinical evaluation of an EHR-integrated, point-of-care CDSS to provide ECG-AI results in the clinical workflow. The findings will provide valuable insights for clinically focused software design to bring AI into routine clinical practice.
基于ai - ecg的临床决策支持软件识别低LVEF的多中心实用实施研究:临床试验设计和方法
人工智能(AI)算法可以使用心电图(ECG)数据检测或预测心血管疾病。临床研究已经评估了ECG-AI算法,包括最近的一项单中心研究,该研究评估了向临床医生提供ECG-AI结果时的结果。基于ECG-AI的临床决策支持软件识别低LVEF的多中心实用实施研究(AIM ECG-AI)将评估集成在电子健康记录(EHR)中的临床决策支持软件(CDSS)的临床影响,以在常规门诊护理期间为临床医生提供即时ECG-AI结果。方法:aim ECG-AI是一项多中心、集群随机试验,招募和随机分配临床医生接受CDSS(干预)或提供常规护理。临床医生从5个地理位置不同的卫生系统中招募,并聚集在护理团队一级。AIM ECG- ai将评估32,000名符合条件的成年患者临床就诊期间提供的临床护理,这些患者没有低LVEF病史,并且在卫生系统的电子病历中记录了数字ECG,并进行90天的随访。研究数据包括临床医生调查,研究软件指标和EHR数据,作为临床医生决策的宣读。AIM ECG-AI将通过超声心动图评估左心室射血分数≤40%的检测,并具有探索性终点。亚组分析将评估与结果相关的卫生系统、临床医生和患者水平特征(NCT05867407)。aim ECG-AI是第一个对ehr集成的多点临床评估,在临床工作流程中提供ECG-AI结果的点护理CDSS。这些发现将为临床重点软件设计提供有价值的见解,将人工智能带入常规临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信