{"title":"Cardiac enhancers: Gateway to the regulatory mechanisms of heart regeneration","authors":"Ian J. Begeman, Megan E. Guyer, Junsu Kang","doi":"10.1016/j.semcdb.2025.103610","DOIUrl":null,"url":null,"abstract":"<div><div>The adult mammalian heart has limited regenerative capacity. Cardiac injury, such as a myocardial infarction (MI), leads to permanent scarring and impaired heart function. In contrast, neonatal mice and zebrafish possess the ability to repair injured hearts. Cardiac regeneration is driven by profound transcriptional changes, which are controlled by gene regulatory elements, such as tissue regeneration enhancer elements (TREEs). Here, we review recent studies on cardiac injury/regeneration enhancers across species. We further explore regulatory mechanisms governing TREE activities and their associated binding regulators. We also discuss the potential of TREE engineering and how these enhancers can be utilized for heart repair. Decoding the regulatory logic of cardiac regeneration enhancers presents a promising avenue for understanding heart regeneration and advancing therapeutic strategies for heart failure.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"170 ","pages":"Article 103610"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952125000205","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The adult mammalian heart has limited regenerative capacity. Cardiac injury, such as a myocardial infarction (MI), leads to permanent scarring and impaired heart function. In contrast, neonatal mice and zebrafish possess the ability to repair injured hearts. Cardiac regeneration is driven by profound transcriptional changes, which are controlled by gene regulatory elements, such as tissue regeneration enhancer elements (TREEs). Here, we review recent studies on cardiac injury/regeneration enhancers across species. We further explore regulatory mechanisms governing TREE activities and their associated binding regulators. We also discuss the potential of TREE engineering and how these enhancers can be utilized for heart repair. Decoding the regulatory logic of cardiac regeneration enhancers presents a promising avenue for understanding heart regeneration and advancing therapeutic strategies for heart failure.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.