Approximation of the first Steklov–Dirichlet eigenvalue on eccentric spherical shells in general dimensions

IF 2.4 2区 数学 Q1 MATHEMATICS
Jiho Hong , Woojoo Lee , Mikyoung Lim
{"title":"Approximation of the first Steklov–Dirichlet eigenvalue on eccentric spherical shells in general dimensions","authors":"Jiho Hong ,&nbsp;Woojoo Lee ,&nbsp;Mikyoung Lim","doi":"10.1016/j.jde.2025.113295","DOIUrl":null,"url":null,"abstract":"<div><div>We study the first Steklov–Dirichlet eigenvalue on eccentric spherical shells in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, imposing the Steklov condition on the outer boundary sphere, denoted by <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>, and the Dirichlet condition on the inner boundary sphere. The first eigenfunction admits a Fourier–Gegenbauer series expansion via the bispherical coordinates, where the Dirichlet-to-Neumann operator on <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> can be recursively expressed in terms of the expansion coefficients <span><span>[1]</span></span>. In this paper, we develop a finite section approach for the Dirichlet-to-Neumann operator to approximate the first Steklov–Dirichlet eigenvalue on eccentric spherical shells. We prove the exponential convergence of this approach by using the variational characterization of the first eigenvalue. Furthermore, based on the convergence result, we propose a numerical computation scheme as an extension of the two-dimensional result in <span><span>[2]</span></span> to general dimensions. We provide numerical examples of the first Steklov–Dirichlet eigenvalue on eccentric spherical shells with various geometric configurations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"437 ","pages":"Article 113295"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003225","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the first Steklov–Dirichlet eigenvalue on eccentric spherical shells in Rn+2 with n1, imposing the Steklov condition on the outer boundary sphere, denoted by ΓS, and the Dirichlet condition on the inner boundary sphere. The first eigenfunction admits a Fourier–Gegenbauer series expansion via the bispherical coordinates, where the Dirichlet-to-Neumann operator on ΓS can be recursively expressed in terms of the expansion coefficients [1]. In this paper, we develop a finite section approach for the Dirichlet-to-Neumann operator to approximate the first Steklov–Dirichlet eigenvalue on eccentric spherical shells. We prove the exponential convergence of this approach by using the variational characterization of the first eigenvalue. Furthermore, based on the convergence result, we propose a numerical computation scheme as an extension of the two-dimensional result in [2] to general dimensions. We provide numerical examples of the first Steklov–Dirichlet eigenvalue on eccentric spherical shells with various geometric configurations.
广义偏心球壳上第一Steklov-Dirichlet特征值的近似
我们研究了n≥1的Rn+2中偏心球壳上的第一个Steklov - Dirichlet特征值,在外边界球上施加Steklov条件(记为ΓS),在内边界球上施加Dirichlet条件。第一个特征函数允许通过双球坐标的Fourier-Gegenbauer级数展开,其中ΓS上的Dirichlet-to-Neumann算子可以递归地表示为展开系数[1]。本文给出了用Dirichlet-to-Neumann算子逼近偏心球壳上第一Steklov-Dirichlet特征值的有限截面方法。利用第一特征值的变分特征证明了该方法的指数收敛性。在此基础上,提出了一种数值计算方案,将[2]中的二维结果推广到一般维度。给出了具有不同几何构型的偏心球壳上第一Steklov-Dirichlet特征值的数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信