Multilayer scaffolds designed with bioinspired topography for bone regeneration

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Paula M. Riosalido , Pablo Velásquez , Ángel Murciano , Piedad N. De Aza
{"title":"Multilayer scaffolds designed with bioinspired topography for bone regeneration","authors":"Paula M. Riosalido ,&nbsp;Pablo Velásquez ,&nbsp;Ángel Murciano ,&nbsp;Piedad N. De Aza","doi":"10.1016/j.ceramint.2025.01.180","DOIUrl":null,"url":null,"abstract":"<div><div>In this investigation, three distinct multiphasic scaffolds, comprising primary crystalline phases of SiO₂, Ca₂P₂O₇, and Ca₃(PO₄)₂, were developed. These scaffolds feature surface coatings that have been functionalised with Na, K, and varying molar proportions of Mg (0–1%). The samples were extensively characterised to evaluate a number of key properties including microstructure, porosity, mechanical properties, biodegradation profile, biocompatibility and <em>in vitro</em> bioactivity. The scaffolds demonstrated a mechanical strength of 1.8 MPa, accompanied by a high macroporosity of over 85 % and micropores ranging from 200 to 6 μm. All scaffolds showed bioactivity. Notably, CS0.7 Mg exhibited a distinctive topography characterised by non-periodic, irregular lamellae at both the micro- and nanoscale. During the bioactivity assays, the lamellae were progressively covered by HA until they were completely obscured after 14 days in SBF. This bioactive behaviour was accompanied by gradual degradation in PBS, with a 15 % weight loss over 21 days, indicating suitability for bone regeneration. In addition, ICP-OES analysis demonstrated ionic exchange from the scaffolds into the culture medium at both concentrations of 15 mg/mL and 30 mg/mL, which promoted the proliferation of 3T3 fibroblasts. Cells seeded on the CS0.7 Mg scaffold also showed sustained cell proliferation over time. This proliferation was found to be influenced by the topography of the scaffold, with the greatest enhancement observed in the CS0.7 Mg-7D samples, which had HA-covered lamellae.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 10","pages":"Pages 13363-13373"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027288422500207X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, three distinct multiphasic scaffolds, comprising primary crystalline phases of SiO₂, Ca₂P₂O₇, and Ca₃(PO₄)₂, were developed. These scaffolds feature surface coatings that have been functionalised with Na, K, and varying molar proportions of Mg (0–1%). The samples were extensively characterised to evaluate a number of key properties including microstructure, porosity, mechanical properties, biodegradation profile, biocompatibility and in vitro bioactivity. The scaffolds demonstrated a mechanical strength of 1.8 MPa, accompanied by a high macroporosity of over 85 % and micropores ranging from 200 to 6 μm. All scaffolds showed bioactivity. Notably, CS0.7 Mg exhibited a distinctive topography characterised by non-periodic, irregular lamellae at both the micro- and nanoscale. During the bioactivity assays, the lamellae were progressively covered by HA until they were completely obscured after 14 days in SBF. This bioactive behaviour was accompanied by gradual degradation in PBS, with a 15 % weight loss over 21 days, indicating suitability for bone regeneration. In addition, ICP-OES analysis demonstrated ionic exchange from the scaffolds into the culture medium at both concentrations of 15 mg/mL and 30 mg/mL, which promoted the proliferation of 3T3 fibroblasts. Cells seeded on the CS0.7 Mg scaffold also showed sustained cell proliferation over time. This proliferation was found to be influenced by the topography of the scaffold, with the greatest enhancement observed in the CS0.7 Mg-7D samples, which had HA-covered lamellae.

Abstract Image

采用仿生地形设计的多层支架用于骨再生
在这项研究中,开发了三种不同的多相支架,包括SiO₂,Ca₂P₂O₇和Ca₃(PO₄)₂的初级晶相。这些支架具有用Na、K和不同摩尔比例的Mg(0-1%)功能化的表面涂层。对样品进行了广泛的表征,以评估一些关键性能,包括微观结构、孔隙度、机械性能、生物降解特征、生物相容性和体外生物活性。该支架的机械强度为1.8 MPa,具有85%以上的高孔隙率和200 ~ 6 μm的微孔。所有支架均显示生物活性。值得注意的是,CS0.7 Mg在微纳米尺度上都表现出非周期性、不规则片层的独特形貌。在生物活性测定中,片层逐渐被HA覆盖,直到在SBF中放置14天后完全被遮蔽。这种生物活性行为伴随着PBS中的逐渐降解,21天体重减轻15%,表明适合骨再生。此外,ICP-OES分析表明,在15 mg/mL和30 mg/mL浓度的培养基中,支架的离子交换促进了3T3成纤维细胞的增殖。接种于CS0.7 Mg支架上的细胞也显示出持续的细胞增殖。发现这种增殖受到支架地形的影响,在具有ha覆盖的片层的CS0.7 Mg-7D样品中观察到最大的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信