Xiaofei Yao , Yumin Chen , Saeed Sarajpoor , Zhihua Wang , Hongmei Gao , Runze Chen
{"title":"A novel strength-based liquefaction triggering criterion based on degradation mechanism of secant shear modulus","authors":"Xiaofei Yao , Yumin Chen , Saeed Sarajpoor , Zhihua Wang , Hongmei Gao , Runze Chen","doi":"10.1016/j.soildyn.2025.109439","DOIUrl":null,"url":null,"abstract":"<div><div>There are currently two main criteria to identify the triggering time of soil liquefaction, namely when the excess pore water pressure reaches vertical effective overburden stress or the double-amplitude axial strain reaches 5 %. However, several researchers have pointed out that the excess pore water pressure may not reach confining pressure at some certain conditions, and the cycle numbers reaching liquefaction obtained by adopting two criteria for calcareous sand specimens are inconsistent, which may lead to overestimation or underestimation of the liquefaction resistance of calcareous sand. Therefore, this study introduces a parameter with physical meaning, secant shear modulus to evaluate the liquefaction potential of soil. To do that, a series of undrained shear tests were conducted on three types of sand. Firstly, the experimental results demonstrated that the difference in cycle numbers to liquefaction obtained by the two criteria increases with the increase of relative density. In addition, the study found that the degradation law of secant shear modulus with the number of cycles is not affected by loading conditions, initial state of soil, and soil type. On this basis, based on the relationship between secant shear modulus gradient and pore pressure ratio, it is highlighted that the liquefaction process can be quantitatively divided into three stages and the moment of liquefaction triggering can be correctly identified. Finally, the proposed liquefaction criterion is compared with widely used traditional criteria and latest apparent viscosity-based criterion, and the results showed that the liquefaction resistance obtained by the proposed criterion was more conservative, which benefits for reducing the occurrence of large strain development.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"195 ","pages":"Article 109439"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125002325","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There are currently two main criteria to identify the triggering time of soil liquefaction, namely when the excess pore water pressure reaches vertical effective overburden stress or the double-amplitude axial strain reaches 5 %. However, several researchers have pointed out that the excess pore water pressure may not reach confining pressure at some certain conditions, and the cycle numbers reaching liquefaction obtained by adopting two criteria for calcareous sand specimens are inconsistent, which may lead to overestimation or underestimation of the liquefaction resistance of calcareous sand. Therefore, this study introduces a parameter with physical meaning, secant shear modulus to evaluate the liquefaction potential of soil. To do that, a series of undrained shear tests were conducted on three types of sand. Firstly, the experimental results demonstrated that the difference in cycle numbers to liquefaction obtained by the two criteria increases with the increase of relative density. In addition, the study found that the degradation law of secant shear modulus with the number of cycles is not affected by loading conditions, initial state of soil, and soil type. On this basis, based on the relationship between secant shear modulus gradient and pore pressure ratio, it is highlighted that the liquefaction process can be quantitatively divided into three stages and the moment of liquefaction triggering can be correctly identified. Finally, the proposed liquefaction criterion is compared with widely used traditional criteria and latest apparent viscosity-based criterion, and the results showed that the liquefaction resistance obtained by the proposed criterion was more conservative, which benefits for reducing the occurrence of large strain development.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.