A note on smooth rotund norms which are not midpoint locally uniformly rotund

IF 1.2 3区 数学 Q1 MATHEMATICS
Carlo Alberto De Bernardi , Alessandro Preti , Jacopo Somaglia
{"title":"A note on smooth rotund norms which are not midpoint locally uniformly rotund","authors":"Carlo Alberto De Bernardi ,&nbsp;Alessandro Preti ,&nbsp;Jacopo Somaglia","doi":"10.1016/j.jmaa.2025.129544","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that every separable infinite-dimensional Banach space admits a Gâteaux smooth and rotund norm which is not midpoint locally uniformly rotund. Moreover, by using a similar technique, we provide in every infinite-dimensional Banach space with separable dual a Fréchet smooth and weakly uniformly rotund norm which is not midpoint locally uniformly rotund. These two results provide a positive answer to some open problems by A. J. Guirao, V. Montesinos, and V. Zizler.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129544"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003257","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that every separable infinite-dimensional Banach space admits a Gâteaux smooth and rotund norm which is not midpoint locally uniformly rotund. Moreover, by using a similar technique, we provide in every infinite-dimensional Banach space with separable dual a Fréchet smooth and weakly uniformly rotund norm which is not midpoint locally uniformly rotund. These two results provide a positive answer to some open problems by A. J. Guirao, V. Montesinos, and V. Zizler.
关于非中点局部均匀圆的光滑圆范数的注释
证明了每一个可分离无限维Banach空间都存在一个非中点局部一致圆的g teaux光滑圆范数。此外,利用类似的技术,在具有可分离对偶的无限维Banach空间中,我们给出了一个非中点局部一致圆的fr光滑弱一致圆范数。这两个结果对a . J. Guirao、V. Montesinos和V. Zizler的一些开放性问题给出了肯定的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信