{"title":"Modeling via cohesive phase-field framework for chemo-mechanical fracture of heterogeneous composites","authors":"Xiongfei Gao , Yang Zhang , K.M. Liew","doi":"10.1016/j.compstruct.2025.119132","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting fracture of heterogeneous composites under chemo-mechanical circumstances is still challenging, owing to intricate interactions between different components and complex crack paths. Herein, we present a novel phase-field model (PFM) based framework for chemo-mechanical fracture of heterogeneous composites from a thermodynamically consistent formulation. By introducing two phase-field variables, both interface and crack are represented in a smeared manner, and the damage of bulk and interface is unified for providing computational conveniences. To characterize quasi-brittle fracture, a cohesive zone model (CZM) with the linear traction-separation law (TSL) is incorporated to the PFM through elegantly choosing optimal constitutive functions. Besides, the material properties are regularized by the interface phase-field to avoid the discontinuity in stress across the material interface, and an analytical expression of modified interface fracture toughness is derived to guarantee the energetic equivalence. For numerical implementation, a staggered solution scheme is adopted to enable algorithmic efficiency and robustness. Representative numerical experiments are conducted to demonstrate the capability of the framework in capturing fracture behaviors including matrix cracking, interface failure, and crack branching and merging.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"364 ","pages":"Article 119132"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325002971","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting fracture of heterogeneous composites under chemo-mechanical circumstances is still challenging, owing to intricate interactions between different components and complex crack paths. Herein, we present a novel phase-field model (PFM) based framework for chemo-mechanical fracture of heterogeneous composites from a thermodynamically consistent formulation. By introducing two phase-field variables, both interface and crack are represented in a smeared manner, and the damage of bulk and interface is unified for providing computational conveniences. To characterize quasi-brittle fracture, a cohesive zone model (CZM) with the linear traction-separation law (TSL) is incorporated to the PFM through elegantly choosing optimal constitutive functions. Besides, the material properties are regularized by the interface phase-field to avoid the discontinuity in stress across the material interface, and an analytical expression of modified interface fracture toughness is derived to guarantee the energetic equivalence. For numerical implementation, a staggered solution scheme is adopted to enable algorithmic efficiency and robustness. Representative numerical experiments are conducted to demonstrate the capability of the framework in capturing fracture behaviors including matrix cracking, interface failure, and crack branching and merging.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.