{"title":"Green synthesis of neem extract and neem oil-based azadirachtin nanopesticides for fall Armyworm control and management","authors":"Ivan Oyege , Alexi Switz , Lauren Oquendo , Anamika Prasad , Maruthi Sridhar Balaji Bhaskar","doi":"10.1016/j.ecoenv.2025.118168","DOIUrl":null,"url":null,"abstract":"<div><div>The global spread of Fall Armyworm (FAW, <em>Spodoptera frugiperda</em>) has posed significant challenges to crop productivity and food security, with current pest management relying heavily on synthetic pesticides. This study explores the green synthesis of neem extract and neem oil-based Azadirachtin nanopesticides using cellulose acetate (CA) as a carrier polymer, focusing on their efficacy against FAW. The objective was to assess whether CA-NEP (neem extract nanopesticides) and CA-NOL (neem oil nanopesticide) formulations were effective at FAW control with minimal ecological impact. The nanopesticides were synthesized by electrospinning at concentrations of 5 %, 10 %, 20 %, 33 %, and 50 % (w/w) and characterized using Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy. Azadirachtin content was quantified using Liquid Chromatography-Mass Spectroscopy. CA-NEP and CA-NOL followed first-order, and Korsmeyer-Peppas release kinetics, respectively. Feeding bioassays showed high FAW mortality rates, with 20 %-50 % CA-NEP achieving greater than 40 % mortality in less than 3 days and 50 % CA-NEP reaching 100 % mortality by day five. The mortality rates of FAW due to feeding on CA-NOL-treated corn leaves reached 40 % after 4 and 6 days, respectively, for 50 % and 33 % CA-NOL. Placing nanopesticide fibers next to corn seeds during planting significantly reduced FAW leaf damage. The lethal dose 50 (LD50) analyses showed that 13 % CA-NEP is the optimal concentration for FAW control. Environmental safety assessments on earthworms showed no acute or chronic toxicity, indicating that the nanopesticides suit ecologically sensitive areas. Therefore, these nanopesticide formulations provide a promising, eco-friendly alternative for sustainable FAW control and management with enhanced efficacy and safety.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"295 ","pages":"Article 118168"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325005044","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The global spread of Fall Armyworm (FAW, Spodoptera frugiperda) has posed significant challenges to crop productivity and food security, with current pest management relying heavily on synthetic pesticides. This study explores the green synthesis of neem extract and neem oil-based Azadirachtin nanopesticides using cellulose acetate (CA) as a carrier polymer, focusing on their efficacy against FAW. The objective was to assess whether CA-NEP (neem extract nanopesticides) and CA-NOL (neem oil nanopesticide) formulations were effective at FAW control with minimal ecological impact. The nanopesticides were synthesized by electrospinning at concentrations of 5 %, 10 %, 20 %, 33 %, and 50 % (w/w) and characterized using Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy. Azadirachtin content was quantified using Liquid Chromatography-Mass Spectroscopy. CA-NEP and CA-NOL followed first-order, and Korsmeyer-Peppas release kinetics, respectively. Feeding bioassays showed high FAW mortality rates, with 20 %-50 % CA-NEP achieving greater than 40 % mortality in less than 3 days and 50 % CA-NEP reaching 100 % mortality by day five. The mortality rates of FAW due to feeding on CA-NOL-treated corn leaves reached 40 % after 4 and 6 days, respectively, for 50 % and 33 % CA-NOL. Placing nanopesticide fibers next to corn seeds during planting significantly reduced FAW leaf damage. The lethal dose 50 (LD50) analyses showed that 13 % CA-NEP is the optimal concentration for FAW control. Environmental safety assessments on earthworms showed no acute or chronic toxicity, indicating that the nanopesticides suit ecologically sensitive areas. Therefore, these nanopesticide formulations provide a promising, eco-friendly alternative for sustainable FAW control and management with enhanced efficacy and safety.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.