Yi Fang , Lang Yang , Feng Rao , Yongming Zheng , Zhenguo Song
{"title":"Adsorption behavior and mechanism of MB, Pb(II) and Cu(II) on porous geopolymers","authors":"Yi Fang , Lang Yang , Feng Rao , Yongming Zheng , Zhenguo Song","doi":"10.1016/j.ceramint.2024.12.564","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a low-cost porous geopolymers (PGP) were prepared using coal gangue and fly ash as raw materials to remove organic and heavy metal ions from wastewater. Various characterization techniques were employed to investigate the microstructure, morphology, pore size distribution, and surface functional groups of the porous geopolymers. The results indicate that the geopolymer exhibits a porous structure with hydroxyl groups on the surface after foaming. It was found that the porous geopolymers exhibited good adsorption capacity for Methylene Blue (MB), Cu(II), and Pb(II), with optimal adsorption capacities reaching 35.60 mg/g, 98.31 mg/g, and 85.67 mg/g, respectively. Fitting analysis suggests that the adsorption of MB, Cu(II), and Pb(II) is better described by the pseudo-second-order kinetic model and the Freundlich isotherm model. This indicates that the adsorption process is primarily chemical adsorption with multilayer adsorption. Competitive adsorption studies showed that Cu(II) could enhance the adsorption of MB, while Pb(II) had no significant effect on the adsorption of MB. Mechanistic studies revealed that the adsorption of MB by PGP is mainly through pore adsorption, electrostatic attraction, and hydrogen bond formation; whereas the adsorption of Cu(II) and Pb(II) is primarily through pore adsorption, electrostatic attraction, chemical reactions, and ion exchange. Recycling experiments demonstrated that after five repetitions, the adsorption capacity of PGP for the three pollutants remained above 60 %. These findings confirm the potential of porous geopolymers as adsorbents. Preliminary cost analysis shows that the adsorption cost of porous geopolymers is only 2.07 RMB/kg, making the geopolymer adsorbent economically advantageous and promising for application, especially considering its ability to utilize industrial solid waste.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 9","pages":"Pages 11455-11466"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224062394","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a low-cost porous geopolymers (PGP) were prepared using coal gangue and fly ash as raw materials to remove organic and heavy metal ions from wastewater. Various characterization techniques were employed to investigate the microstructure, morphology, pore size distribution, and surface functional groups of the porous geopolymers. The results indicate that the geopolymer exhibits a porous structure with hydroxyl groups on the surface after foaming. It was found that the porous geopolymers exhibited good adsorption capacity for Methylene Blue (MB), Cu(II), and Pb(II), with optimal adsorption capacities reaching 35.60 mg/g, 98.31 mg/g, and 85.67 mg/g, respectively. Fitting analysis suggests that the adsorption of MB, Cu(II), and Pb(II) is better described by the pseudo-second-order kinetic model and the Freundlich isotherm model. This indicates that the adsorption process is primarily chemical adsorption with multilayer adsorption. Competitive adsorption studies showed that Cu(II) could enhance the adsorption of MB, while Pb(II) had no significant effect on the adsorption of MB. Mechanistic studies revealed that the adsorption of MB by PGP is mainly through pore adsorption, electrostatic attraction, and hydrogen bond formation; whereas the adsorption of Cu(II) and Pb(II) is primarily through pore adsorption, electrostatic attraction, chemical reactions, and ion exchange. Recycling experiments demonstrated that after five repetitions, the adsorption capacity of PGP for the three pollutants remained above 60 %. These findings confirm the potential of porous geopolymers as adsorbents. Preliminary cost analysis shows that the adsorption cost of porous geopolymers is only 2.07 RMB/kg, making the geopolymer adsorbent economically advantageous and promising for application, especially considering its ability to utilize industrial solid waste.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.