Sticky particles solutions for the attractive pressureless Euler-Poisson system; a projection formula and asymptotic behavior

IF 1.2 3区 数学 Q1 MATHEMATICS
B. Becerra , J. Linderoth , H. Pesin , A. Tudorascu , R. Wassink
{"title":"Sticky particles solutions for the attractive pressureless Euler-Poisson system; a projection formula and asymptotic behavior","authors":"B. Becerra ,&nbsp;J. Linderoth ,&nbsp;H. Pesin ,&nbsp;A. Tudorascu ,&nbsp;R. Wassink","doi":"10.1016/j.jmaa.2025.129553","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we perform a comprehensive study of the sticky particles solutions to the one-dimensional attractive pressureless Euler-Poisson system. We first provide a Lagrangian map characterization of the sticky particles solutions as projections onto the convex cone of essentially nondecreasing functions in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> by following closely the approach employed earlier by Natile &amp; Savaré for the pressureless Euler case. As a byproduct, we obtain sticky particles solutions for general initial data consisting of Borel probability measures with finite second moment and initial velocities that are square-integrable with respect to said measures. The asymptotic behavior of the sticky particles solutions is the main objective of our work; we obtain explicit exact collapse times into the equilibrium whenever such collapse occurs. In general, we prove that the sticky particles solution converges to the equilibrium in the 1-Wasserstein distance at an explicit rate.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129553"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we perform a comprehensive study of the sticky particles solutions to the one-dimensional attractive pressureless Euler-Poisson system. We first provide a Lagrangian map characterization of the sticky particles solutions as projections onto the convex cone of essentially nondecreasing functions in L2(0,1) by following closely the approach employed earlier by Natile & Savaré for the pressureless Euler case. As a byproduct, we obtain sticky particles solutions for general initial data consisting of Borel probability measures with finite second moment and initial velocities that are square-integrable with respect to said measures. The asymptotic behavior of the sticky particles solutions is the main objective of our work; we obtain explicit exact collapse times into the equilibrium whenever such collapse occurs. In general, we prove that the sticky particles solution converges to the equilibrium in the 1-Wasserstein distance at an explicit rate.
吸引无压Euler-Poisson系统的粘性粒子解一个投影公式及其渐近性
本文对一维吸引无压欧拉-泊松系统的粘性粒子解进行了全面的研究。我们首先通过严格遵循Natile &;早先采用的方法,提供了L2(0,1)中本质非递减函数的凸锥投影的粘性粒子解的拉格朗日映射表征。这是无压欧拉情况。作为一个副产品,我们得到粘粒解一般初始数据由有限秒矩的Borel概率测度和相对于所述测度平方可积的初始速度组成。粘性粒子解的渐近行为是我们工作的主要目标;当这种崩溃发生时,我们得到了进入平衡状态的明确精确的崩溃时间。一般来说,我们证明了粘性粒子解在1-Wasserstein距离上以显式的速率收敛到平衡态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信