Enhancing Triboelectric Nanogenerator Performance with Metal–Organic Framework Composite Nanofibers: Applications in Public Transit Monitoring, Staircase Alerts, and Security
IF 4.4 2区 化学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Enhancing Triboelectric Nanogenerator Performance with Metal–Organic Framework Composite Nanofibers: Applications in Public Transit Monitoring, Staircase Alerts, and Security","authors":"Lakshakoti Bochu, Anjaly Babu, Supraja Potu, Uday Kumar Khanapuram, Rakesh Kumar Rajaboina* and Prakash Kodali*, ","doi":"10.1021/acsapm.4c0352910.1021/acsapm.4c03529","DOIUrl":null,"url":null,"abstract":"<p >Triboelectric nanogenerators (TENGs) are known for their compact size, cost-effectiveness, and high efficiency, offering a renewable and green energy solution. The choice of materials used in TENG construction plays a crucial role in determining their performance and applications. Metal–organic frameworks (MOFs), with their unique architecture and functionality, have emerged as promising materials for TENG applications. In this study, we designed and synthesized a ZIF-67/polyvinyl alcohol (PVA) (ZP) composite nanofiber mat using the electrospinning method. The incorporation of ZIF-67 particles into PVA enhanced the TENG’s performance, attributed to improved surface properties and strong electron-donating capabilities. When tested under hand tapping, the ZP-TENG demonstrated an output voltage of 416 V and a current of 185 μA, with a power density of 7.18 W/m<sup>2</sup> at a load resistance of 4 MΩ. This high power density enabled the ZP-TENG to power 480 LEDs with each hand tap momentarily, and when combined with energy management circuits, it was able to continuously power a calculator through a capacitor and bridge rectifier circuit. Additionally, the ZP-TENG was applied in real-time public monitoring systems, staircase step indicators, and indoor security enhancements, utilizing an Arduino Nano 33 IoT board and the Blynk cloud platform. This work highlights the potential of MOF/polymer-based TENGs for improved output performance and paves the way for exploring advanced materials in TENG technology.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 7","pages":"4132–4141 4132–4141"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c03529","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Triboelectric nanogenerators (TENGs) are known for their compact size, cost-effectiveness, and high efficiency, offering a renewable and green energy solution. The choice of materials used in TENG construction plays a crucial role in determining their performance and applications. Metal–organic frameworks (MOFs), with their unique architecture and functionality, have emerged as promising materials for TENG applications. In this study, we designed and synthesized a ZIF-67/polyvinyl alcohol (PVA) (ZP) composite nanofiber mat using the electrospinning method. The incorporation of ZIF-67 particles into PVA enhanced the TENG’s performance, attributed to improved surface properties and strong electron-donating capabilities. When tested under hand tapping, the ZP-TENG demonstrated an output voltage of 416 V and a current of 185 μA, with a power density of 7.18 W/m2 at a load resistance of 4 MΩ. This high power density enabled the ZP-TENG to power 480 LEDs with each hand tap momentarily, and when combined with energy management circuits, it was able to continuously power a calculator through a capacitor and bridge rectifier circuit. Additionally, the ZP-TENG was applied in real-time public monitoring systems, staircase step indicators, and indoor security enhancements, utilizing an Arduino Nano 33 IoT board and the Blynk cloud platform. This work highlights the potential of MOF/polymer-based TENGs for improved output performance and paves the way for exploring advanced materials in TENG technology.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.