NO Detection on Exposed Fe–N4 Sites Deposited on Nanometer-Sized Cu-Hemin MOFs Coated on Reduced Graphene Oxide at Room Temperature

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
You Wu, Weiran Li, Yanwei Chang, Yixun Gao, Fengnan Wang, Hao Li, Paddy J. French, Yi-Kuen Lee, Sheikh A. Akbar, Ahmad M. Umar Siddiqui, Yao Wang* and Guofu Zhou, 
{"title":"NO Detection on Exposed Fe–N4 Sites Deposited on Nanometer-Sized Cu-Hemin MOFs Coated on Reduced Graphene Oxide at Room Temperature","authors":"You Wu,&nbsp;Weiran Li,&nbsp;Yanwei Chang,&nbsp;Yixun Gao,&nbsp;Fengnan Wang,&nbsp;Hao Li,&nbsp;Paddy J. French,&nbsp;Yi-Kuen Lee,&nbsp;Sheikh A. Akbar,&nbsp;Ahmad M. Umar Siddiqui,&nbsp;Yao Wang* and Guofu Zhou,&nbsp;","doi":"10.1021/acsanm.4c0639710.1021/acsanm.4c06397","DOIUrl":null,"url":null,"abstract":"<p >For the practical diagnosis of inflammatory respiratory diseases, achieving sensitive and rapid NO sensing at the parts per billion level, all at room temperature, is of great significance. Herein, we developed a chemiresistor gas sensor with a sheet-on-sheet structure composed of an amorphous Cu-hemin MOF with reduced graphene oxide (rGO) nanosheets. The SEM images show that the Cu-hemin MOF/rGO composite exhibits a two-dimensional sheet-like structure. Due to its nanosized architecture, the Cu-hemin MOF exhibits a significant number of active sites for efficient NO detection. The Cu-hemin MOF/rGO composite material exhibited excellent NO sensing performance, including high sensitivity (<i>R</i><sub>a</sub>/<i>R</i><sub>g</sub> = 1.06, 50 ppb), reliable repeatability, high selectivity, and fast response/recovery (43 s/367 s, 10 ppm). The mechanism study revealed that the formation of the MOF altered the hemin dimer’s structure, resulting in the release of additional Fe(III)–N<sub>4</sub> active sites and improved sensitivity. Moreover, the incorporation of rGO significantly boosted the conductivity of Cu-hemin MOFs. Using this two-dimensional sheet-like material, a mask-type sensor was also prepared and verified to be effective as a flexible and wearable sensing device for parts per billion level exhaled NO detection.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 14","pages":"6943–6954 6943–6954"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06397","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For the practical diagnosis of inflammatory respiratory diseases, achieving sensitive and rapid NO sensing at the parts per billion level, all at room temperature, is of great significance. Herein, we developed a chemiresistor gas sensor with a sheet-on-sheet structure composed of an amorphous Cu-hemin MOF with reduced graphene oxide (rGO) nanosheets. The SEM images show that the Cu-hemin MOF/rGO composite exhibits a two-dimensional sheet-like structure. Due to its nanosized architecture, the Cu-hemin MOF exhibits a significant number of active sites for efficient NO detection. The Cu-hemin MOF/rGO composite material exhibited excellent NO sensing performance, including high sensitivity (Ra/Rg = 1.06, 50 ppb), reliable repeatability, high selectivity, and fast response/recovery (43 s/367 s, 10 ppm). The mechanism study revealed that the formation of the MOF altered the hemin dimer’s structure, resulting in the release of additional Fe(III)–N4 active sites and improved sensitivity. Moreover, the incorporation of rGO significantly boosted the conductivity of Cu-hemin MOFs. Using this two-dimensional sheet-like material, a mask-type sensor was also prepared and verified to be effective as a flexible and wearable sensing device for parts per billion level exhaled NO detection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信