{"title":"Hyperglycemia as driver of glioblastoma progression: Insights from Mendelian randomization and single-cell transcriptomics","authors":"Jin Li , Wenjing Wu , Liguo Ye , Bo Zheng","doi":"10.1016/j.brainres.2025.149636","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Hyperglycemia and diabetes may influence GBM progression by altering tumor metabolism and the tumor microenvironment. However, the causal relationship between blood glucose levels and GBM remains unclear.</div></div><div><h3>Methods</h3><div>Mendelian randomization (MR) analysis was performed using GWAS data from the UK Biobank and FinnGen databases, with fasting blood glucose, plasma glucose, cerebrospinal fluid (CSF) glucose, and diabetes as exposures. Single-cell RNA sequencing of GBM mouse models on high-glucose and control diets was conducted to explore the cellular landscape of the tumor microenvironment under hyperglycemic conditions. Additionally, gene set enrichment analysis (GSEA) was performed on transcriptomic data from brain tissues of diabetic patients to assess the activity of GBM-related pathways.</div></div><div><h3>Results</h3><div>MR analysis demonstrated a significant genetic relationship between elevated fasting blood glucose and GBM risk, with an odds ratio (OR) of 40.991 (95 % CI: 2.066–813.447, p = 0.015). Type 2 diabetes (T2D) also showed a potential causal link with GBM, with the Weighted Median and Inverse Variance Weighted methods yielding ORs of 2.740 (95 % CI: 1.033–7.273, p = 0.043) and 2.100 (95 % CI: 1.029–4.287, p = 0.042), respectively. Single-cell transcriptomic analysis of GBM mouse models revealed an increased proportion of GBM tumor stem cells and pro-tumorigenic M2 macrophages in the high-glucose diet (HGD) group. GSEA of diabetic patient brain tissue revealed heightened activity of GBM-related pathways, particularly in astrocytes, endothelial cells, and neurons.</div></div><div><h3>Conclusion</h3><div>These findings suggest that hyperglycemia may actively contribute to GBM progression by promoting cellular changes within the tumor microenvironment and activating GBM-related pathways in brain tissues.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1858 ","pages":"Article 149636"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325001957","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Hyperglycemia and diabetes may influence GBM progression by altering tumor metabolism and the tumor microenvironment. However, the causal relationship between blood glucose levels and GBM remains unclear.
Methods
Mendelian randomization (MR) analysis was performed using GWAS data from the UK Biobank and FinnGen databases, with fasting blood glucose, plasma glucose, cerebrospinal fluid (CSF) glucose, and diabetes as exposures. Single-cell RNA sequencing of GBM mouse models on high-glucose and control diets was conducted to explore the cellular landscape of the tumor microenvironment under hyperglycemic conditions. Additionally, gene set enrichment analysis (GSEA) was performed on transcriptomic data from brain tissues of diabetic patients to assess the activity of GBM-related pathways.
Results
MR analysis demonstrated a significant genetic relationship between elevated fasting blood glucose and GBM risk, with an odds ratio (OR) of 40.991 (95 % CI: 2.066–813.447, p = 0.015). Type 2 diabetes (T2D) also showed a potential causal link with GBM, with the Weighted Median and Inverse Variance Weighted methods yielding ORs of 2.740 (95 % CI: 1.033–7.273, p = 0.043) and 2.100 (95 % CI: 1.029–4.287, p = 0.042), respectively. Single-cell transcriptomic analysis of GBM mouse models revealed an increased proportion of GBM tumor stem cells and pro-tumorigenic M2 macrophages in the high-glucose diet (HGD) group. GSEA of diabetic patient brain tissue revealed heightened activity of GBM-related pathways, particularly in astrocytes, endothelial cells, and neurons.
Conclusion
These findings suggest that hyperglycemia may actively contribute to GBM progression by promoting cellular changes within the tumor microenvironment and activating GBM-related pathways in brain tissues.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.