Yurui Li, Anaira Román Santiago, Kwiyong Kim, Junhyung Park, Joseph R. Hladik, Xiao Su and Roland D. Cusick*,
{"title":"Electrodepositing Polyvinyl Ferrocene Films to Enhance Oxyanion Recovery and Electrode Longevity","authors":"Yurui Li, Anaira Román Santiago, Kwiyong Kim, Junhyung Park, Joseph R. Hladik, Xiao Su and Roland D. Cusick*, ","doi":"10.1021/acsestengg.4c0078710.1021/acsestengg.4c00787","DOIUrl":null,"url":null,"abstract":"<p >Rhenium, a critical high-value mineral, naturally occurs as perrhenate (ReO<sub>4</sub><sup>–</sup>) and is difficult to separate from competing anions. Polyvinyl ferrocene (PVF) coated electrodes have exhibited selective adsorption of transition metal oxyanions, but performance degradation with cycling is poorly understood. This study examines the impact of two PVF film fabrication strategies (electrodeposition (ED) and dip-coating (DC)) on (i) rhenium uptake capacity and selectivity, (ii) electrode regeneration and performance longevity, and (iii) lifecycle cost of Re recovery. Electrodeposited PVF films exhibited nearly twice the rhenium uptake (351 ± 82.1 mg Re/g coating) of dip-coating PVF films (158 ± 32.7 mg Re/g coating). Additionally, after 15,000 charge/discharge cycles, Re uptake remained 69.1 ± 11.3% for ED but only 28.0 ± 12.3% for DC films, indicating improved PVF attachment to carbon scaffolds. Operational conditions significantly affected rhenium release after adsorption, with regeneration of 82.6 ± 9.4% at −0.8 V vs Ag/AgCl compared to 30.78 ± 6.2% at 0 V vs Ag/AgCl, due to reduction of both Fe and Re which promoted electrode regeneration at −0.8 V vs Ag/AgCl. A preliminary technoeconomic analysis indicates the high selectivity and longevity of PVF-ED electrodes could facilitate Re recovery at ∼5% of the current market price.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 4","pages":"1023–1031 1023–1031"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rhenium, a critical high-value mineral, naturally occurs as perrhenate (ReO4–) and is difficult to separate from competing anions. Polyvinyl ferrocene (PVF) coated electrodes have exhibited selective adsorption of transition metal oxyanions, but performance degradation with cycling is poorly understood. This study examines the impact of two PVF film fabrication strategies (electrodeposition (ED) and dip-coating (DC)) on (i) rhenium uptake capacity and selectivity, (ii) electrode regeneration and performance longevity, and (iii) lifecycle cost of Re recovery. Electrodeposited PVF films exhibited nearly twice the rhenium uptake (351 ± 82.1 mg Re/g coating) of dip-coating PVF films (158 ± 32.7 mg Re/g coating). Additionally, after 15,000 charge/discharge cycles, Re uptake remained 69.1 ± 11.3% for ED but only 28.0 ± 12.3% for DC films, indicating improved PVF attachment to carbon scaffolds. Operational conditions significantly affected rhenium release after adsorption, with regeneration of 82.6 ± 9.4% at −0.8 V vs Ag/AgCl compared to 30.78 ± 6.2% at 0 V vs Ag/AgCl, due to reduction of both Fe and Re which promoted electrode regeneration at −0.8 V vs Ag/AgCl. A preliminary technoeconomic analysis indicates the high selectivity and longevity of PVF-ED electrodes could facilitate Re recovery at ∼5% of the current market price.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.