The Planar Architecture of Silicon Anode Enables Stress Relief in Stable Lithium-Ion Batteries

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-10 DOI:10.1002/smll.202412350
Jie Zeng, Yuan Kun Hong, Ying Yan Hu, Xiao Ming Xu, Yu Long Sun, Sayed Y. Attia, Ting Liu, Xian Bin Liu, Zi Ping Wu
{"title":"The Planar Architecture of Silicon Anode Enables Stress Relief in Stable Lithium-Ion Batteries","authors":"Jie Zeng,&nbsp;Yuan Kun Hong,&nbsp;Ying Yan Hu,&nbsp;Xiao Ming Xu,&nbsp;Yu Long Sun,&nbsp;Sayed Y. Attia,&nbsp;Ting Liu,&nbsp;Xian Bin Liu,&nbsp;Zi Ping Wu","doi":"10.1002/smll.202412350","DOIUrl":null,"url":null,"abstract":"<p>Silicon is a promising anode for lithium-ion batteries but suffers tremendous volume change during cycling. Scalable and low-cost fabrication of silicon anodes with minimized internal stress, avoiding electrode degradation and capacity decline, remains a significant challenge. Herein, a planar silicon demonstrates internal stress release in the electrode at electrochemical cycling, which indicates a favorable areal capacity of 3.4 mAh cm<sup>−2</sup> and a stable specific capacity of 810 mAh g<sup>−1</sup> even after 600 cycles at a remarkable current density of 3.6 A g<sup>−1</sup>. Such good results are mainly ascribed to the planar structure that changes the expansion direction, which enables stress relief in the electrode. In addition, the planar structure provides abundant contact area, which aligns the anode stack and then shortens the ion diffusion. This work demonstrates useful insights on stress release through structure engineering and revolutionizes the traditional design for lithium-ion batteries, ensuring energy storage devices transcend current limitations.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412350","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon is a promising anode for lithium-ion batteries but suffers tremendous volume change during cycling. Scalable and low-cost fabrication of silicon anodes with minimized internal stress, avoiding electrode degradation and capacity decline, remains a significant challenge. Herein, a planar silicon demonstrates internal stress release in the electrode at electrochemical cycling, which indicates a favorable areal capacity of 3.4 mAh cm−2 and a stable specific capacity of 810 mAh g−1 even after 600 cycles at a remarkable current density of 3.6 A g−1. Such good results are mainly ascribed to the planar structure that changes the expansion direction, which enables stress relief in the electrode. In addition, the planar structure provides abundant contact area, which aligns the anode stack and then shortens the ion diffusion. This work demonstrates useful insights on stress release through structure engineering and revolutionizes the traditional design for lithium-ion batteries, ensuring energy storage devices transcend current limitations.

Abstract Image

硅阳极的平面结构使稳定锂离子电池的应力消除成为可能
硅是一种很有前途的锂离子电池阳极,但在循环过程中会发生巨大的体积变化。可扩展和低成本制造内应力最小的硅阳极,避免电极退化和容量下降,仍然是一个重大挑战。在此,平面硅电极在电化学循环中显示出内应力释放,表明在3.6 a g−1的显著电流密度下,即使在600次循环后,仍具有3.4 mAh cm−2的良好面容量和810 mAh g−1的稳定比容量。这种良好的效果主要归功于平面结构改变了膨胀方向,使得电极内部的应力得以消除。此外,平面结构提供了丰富的接触面积,使阳极堆排列整齐,从而缩短了离子扩散。这项工作展示了通过结构工程对应力释放的有用见解,并彻底改变了锂离子电池的传统设计,确保了储能设备超越了当前的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信