Tungsten-doping Enables Excellent Kinetics and High Stability of Cobalt-free Ultrahigh-nickel Single-crystal Cathode

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jinfeng Zheng, Shangquan Zhao, Weicheng Guan, Shengnan Liao, Ting Zeng, Shirui Zhang, Zhihao Yue, Shan Fang, Naigen Zhou, Yinzhu Jiang, Yong Li
{"title":"Tungsten-doping Enables Excellent Kinetics and High Stability of Cobalt-free Ultrahigh-nickel Single-crystal Cathode","authors":"Jinfeng Zheng, Shangquan Zhao, Weicheng Guan, Shengnan Liao, Ting Zeng, Shirui Zhang, Zhihao Yue, Shan Fang, Naigen Zhou, Yinzhu Jiang, Yong Li","doi":"10.1016/j.ensm.2025.104251","DOIUrl":null,"url":null,"abstract":"Cobalt-free ultra-high nickel (LiNi<sub>x</sub>Mn<sub>1-x</sub>O<sub>2</sub>, NM, x≥0.9) single crystal cathode material possesses great potential application due to its low cost and high structure stability, but it demonstrates poor rate performance and low capacity, suppressing its practical application progress. Doping high-valent ions (such as tungsten, W) is suggested to be a promising solution to address the above problems, however, the doping intrinsic role of which is still unclear since non-doping effects coexist. In this work, only W bulk-doping in single crystal NM cathode is achieved by high-temperature two-step sintering method to explore the W-doping effects, which can enhance Li<sup>+</sup> diffusion and electronic conductivity regardless of the Co deficiency and long Li<sup>+</sup> diffusion channel, thereby increasing the available specific capacity and rate capability of the cathode material. It shows that the initial Coulombic efficiency increases by about 4%, corresponding to a discharge specific capacity increase of more than 10 mAh g<sup>−1</sup> after doping W. Besides, the specific capacity of W-doped cathode can reach 133 mAh g<sup>−1</sup> at a high current of 5 C, which is much higher than 107 mAh g<sup>−1</sup> of the pristine cathode. Moreover, the introduction of strong W-O bonds can bind lattice oxygen, inhibiting oxygen release and harmful phase transitions, improving structural and thermal stability as a result. This work provides an effective strategy for developing cobalt-free cathode materials and a new perspective for understanding the electrochemical performance enhancement by doping high-valence ions.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"21 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104251","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt-free ultra-high nickel (LiNixMn1-xO2, NM, x≥0.9) single crystal cathode material possesses great potential application due to its low cost and high structure stability, but it demonstrates poor rate performance and low capacity, suppressing its practical application progress. Doping high-valent ions (such as tungsten, W) is suggested to be a promising solution to address the above problems, however, the doping intrinsic role of which is still unclear since non-doping effects coexist. In this work, only W bulk-doping in single crystal NM cathode is achieved by high-temperature two-step sintering method to explore the W-doping effects, which can enhance Li+ diffusion and electronic conductivity regardless of the Co deficiency and long Li+ diffusion channel, thereby increasing the available specific capacity and rate capability of the cathode material. It shows that the initial Coulombic efficiency increases by about 4%, corresponding to a discharge specific capacity increase of more than 10 mAh g−1 after doping W. Besides, the specific capacity of W-doped cathode can reach 133 mAh g−1 at a high current of 5 C, which is much higher than 107 mAh g−1 of the pristine cathode. Moreover, the introduction of strong W-O bonds can bind lattice oxygen, inhibiting oxygen release and harmful phase transitions, improving structural and thermal stability as a result. This work provides an effective strategy for developing cobalt-free cathode materials and a new perspective for understanding the electrochemical performance enhancement by doping high-valence ions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信