Data Enabled Predictive Control for Water Distribution Systems Optimization

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Gal Perelman, Avi Ostfeld
{"title":"Data Enabled Predictive Control for Water Distribution Systems Optimization","authors":"Gal Perelman, Avi Ostfeld","doi":"10.1029/2024wr039059","DOIUrl":null,"url":null,"abstract":"Recent developments in control theory, coupled with the growing availability of real-time data, have paved the way for improved data-driven control methodologies. This study explores the application of the Data-Enabled Predictive Control (DeePC) algorithm to optimize the operation of water distribution systems (WDS). WDS are characterized by inherent uncertainties and complex nonlinear dynamics. Hence, classic control strategies involving physical model-based or state-space methods are often difficult to implement and scale. The DeePC method suggests a paradigm shift by utilizing a data-driven approach. The technique employs a finite set of input-output samples (control settings and measured data) to learn an unknown system's behavior and derive optimal policies, effectively bypassing the need for an explicit mathematical model of the system. In this study, DeePC is applied to two WDS control applications of pressure management and chlorine disinfection scheduling, demonstrating superior performance compared to standard control strategies.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"25 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039059","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in control theory, coupled with the growing availability of real-time data, have paved the way for improved data-driven control methodologies. This study explores the application of the Data-Enabled Predictive Control (DeePC) algorithm to optimize the operation of water distribution systems (WDS). WDS are characterized by inherent uncertainties and complex nonlinear dynamics. Hence, classic control strategies involving physical model-based or state-space methods are often difficult to implement and scale. The DeePC method suggests a paradigm shift by utilizing a data-driven approach. The technique employs a finite set of input-output samples (control settings and measured data) to learn an unknown system's behavior and derive optimal policies, effectively bypassing the need for an explicit mathematical model of the system. In this study, DeePC is applied to two WDS control applications of pressure management and chlorine disinfection scheduling, demonstrating superior performance compared to standard control strategies.
控制理论的最新发展,加上实时数据可用性的不断提高,为改进数据驱动控制方法铺平了道路。本研究探讨了数据驱动预测控制(DeePC)算法在优化配水系统(WDS)运行中的应用。配水系统具有固有的不确定性和复杂的非线性动态特性。因此,涉及基于物理模型或状态空间方法的传统控制策略往往难以实施和扩展。DeePC 方法通过利用数据驱动方法实现了模式转变。该技术利用一组有限的输入输出样本(控制设置和测量数据)来学习未知系统的行为并推导出最优策略,从而有效地绕过了对系统显式数学模型的需求。在本研究中,DeePC 被应用于压力管理和氯消毒调度这两个 WDS 控制应用中,与标准控制策略相比,DeePC 表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信