Regulating Interfacial Molecular Configuration to Drive Facet-Selective Zn Metal Deposition

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue Ouyang, Wei Zong, Xuan Gao, Shi Xuan Leong, Jaslyn Ru Ting Chen, Yuhang Dai, Haobo Dong, In Yee Phang, Paul R. Shearing, Guanjie He, Yue-E Miao, Tianxi Liu, Xing Yi Ling
{"title":"Regulating Interfacial Molecular Configuration to Drive Facet-Selective Zn Metal Deposition","authors":"Yue Ouyang, Wei Zong, Xuan Gao, Shi Xuan Leong, Jaslyn Ru Ting Chen, Yuhang Dai, Haobo Dong, In Yee Phang, Paul R. Shearing, Guanjie He, Yue-E Miao, Tianxi Liu, Xing Yi Ling","doi":"10.1002/anie.202504965","DOIUrl":null,"url":null,"abstract":"The direct use of metal anode emerges as a key strategy in advancing high-energy-density batteries, applicable across non-protonic, aqueous, and solid-state battery systems. To enhance battery durability, one effective approach involves employing interfacial molecular modification to modulate metal's facet orientation, reducing the tendency of metals to form random and loose morphologies during deposition. Herein, we propose a model to elucidate how dicarboxylic acid molecules with varying alkyl chain lengths modulate their adsorption behavior and deposition rate on Zn surfaces, achieving facet-selective Zn deposition. Taking glutaric acid (GA) as an example, its medium alkyl chain length allows for a \"flat-lying\" adsorption configuration on Zn(002) surface, resulting in strong adsorption and Zn-GA metal-molecule bridging interface. This regulates Zn2+ diffusion process and restricts its accessibility to the Zn(002) facet, facilitating the selective exposure of Zn(002) facet. Due to this design, the Zn||Zn symmetric cell stably operates at a high current density of 20 mA·cm-2 and a high depth of discharge of 85%. The Zn||MnO2 pouch cell achieves a high capacity of 1.1 Ah with 90% capacity retention. This metal-molecule interface design can be extended to other metal anodes, with the potential for tailored molecular selections to regulate the selective growth of crystal facets.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"34 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The direct use of metal anode emerges as a key strategy in advancing high-energy-density batteries, applicable across non-protonic, aqueous, and solid-state battery systems. To enhance battery durability, one effective approach involves employing interfacial molecular modification to modulate metal's facet orientation, reducing the tendency of metals to form random and loose morphologies during deposition. Herein, we propose a model to elucidate how dicarboxylic acid molecules with varying alkyl chain lengths modulate their adsorption behavior and deposition rate on Zn surfaces, achieving facet-selective Zn deposition. Taking glutaric acid (GA) as an example, its medium alkyl chain length allows for a "flat-lying" adsorption configuration on Zn(002) surface, resulting in strong adsorption and Zn-GA metal-molecule bridging interface. This regulates Zn2+ diffusion process and restricts its accessibility to the Zn(002) facet, facilitating the selective exposure of Zn(002) facet. Due to this design, the Zn||Zn symmetric cell stably operates at a high current density of 20 mA·cm-2 and a high depth of discharge of 85%. The Zn||MnO2 pouch cell achieves a high capacity of 1.1 Ah with 90% capacity retention. This metal-molecule interface design can be extended to other metal anodes, with the potential for tailored molecular selections to regulate the selective growth of crystal facets.
调节界面分子结构驱动面选择性锌金属沉积
直接使用金属阳极是推进高能量密度电池的关键策略,适用于非质子、水和固态电池系统。为了提高电池的耐用性,一种有效的方法是采用界面分子修饰来调节金属的面取向,减少金属在沉积过程中形成随机和松散形态的趋势。在此,我们提出了一个模型来阐明具有不同烷基链长的二羧酸分子如何调节其在锌表面的吸附行为和沉积速率,从而实现面选择性锌沉积。以戊二酸(GA)为例,其中等的烷基链长使得其在Zn(002)表面形成“平放”的吸附构型,从而形成很强的吸附和Zn-GA金属-分子桥接界面。这调节了Zn2+的扩散过程,限制了其接近Zn(002)面,有利于Zn(002)面选择性暴露。由于这种设计,锌||锌对称电池在20 mA·cm-2的高电流密度和85%的高放电深度下稳定工作。锌||MnO2袋电池容量高达1.1 Ah,容量保持率高达90%。这种金属-分子界面设计可以扩展到其他金属阳极,具有定制分子选择的潜力,以调节晶体表面的选择性生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信