Yue Ouyang, Wei Zong, Xuan Gao, Shi Xuan Leong, Jaslyn Ru Ting Chen, Yuhang Dai, Haobo Dong, In Yee Phang, Paul R. Shearing, Guanjie He, Yue-E Miao, Tianxi Liu, Xing Yi Ling
{"title":"Regulating Interfacial Molecular Configuration to Drive Facet-Selective Zn Metal Deposition","authors":"Yue Ouyang, Wei Zong, Xuan Gao, Shi Xuan Leong, Jaslyn Ru Ting Chen, Yuhang Dai, Haobo Dong, In Yee Phang, Paul R. Shearing, Guanjie He, Yue-E Miao, Tianxi Liu, Xing Yi Ling","doi":"10.1002/anie.202504965","DOIUrl":null,"url":null,"abstract":"The direct use of metal anode emerges as a key strategy in advancing high-energy-density batteries, applicable across non-protonic, aqueous, and solid-state battery systems. To enhance battery durability, one effective approach involves employing interfacial molecular modification to modulate metal's facet orientation, reducing the tendency of metals to form random and loose morphologies during deposition. Herein, we propose a model to elucidate how dicarboxylic acid molecules with varying alkyl chain lengths modulate their adsorption behavior and deposition rate on Zn surfaces, achieving facet-selective Zn deposition. Taking glutaric acid (GA) as an example, its medium alkyl chain length allows for a \"flat-lying\" adsorption configuration on Zn(002) surface, resulting in strong adsorption and Zn-GA metal-molecule bridging interface. This regulates Zn2+ diffusion process and restricts its accessibility to the Zn(002) facet, facilitating the selective exposure of Zn(002) facet. Due to this design, the Zn||Zn symmetric cell stably operates at a high current density of 20 mA·cm-2 and a high depth of discharge of 85%. The Zn||MnO2 pouch cell achieves a high capacity of 1.1 Ah with 90% capacity retention. This metal-molecule interface design can be extended to other metal anodes, with the potential for tailored molecular selections to regulate the selective growth of crystal facets.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"34 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The direct use of metal anode emerges as a key strategy in advancing high-energy-density batteries, applicable across non-protonic, aqueous, and solid-state battery systems. To enhance battery durability, one effective approach involves employing interfacial molecular modification to modulate metal's facet orientation, reducing the tendency of metals to form random and loose morphologies during deposition. Herein, we propose a model to elucidate how dicarboxylic acid molecules with varying alkyl chain lengths modulate their adsorption behavior and deposition rate on Zn surfaces, achieving facet-selective Zn deposition. Taking glutaric acid (GA) as an example, its medium alkyl chain length allows for a "flat-lying" adsorption configuration on Zn(002) surface, resulting in strong adsorption and Zn-GA metal-molecule bridging interface. This regulates Zn2+ diffusion process and restricts its accessibility to the Zn(002) facet, facilitating the selective exposure of Zn(002) facet. Due to this design, the Zn||Zn symmetric cell stably operates at a high current density of 20 mA·cm-2 and a high depth of discharge of 85%. The Zn||MnO2 pouch cell achieves a high capacity of 1.1 Ah with 90% capacity retention. This metal-molecule interface design can be extended to other metal anodes, with the potential for tailored molecular selections to regulate the selective growth of crystal facets.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.