Phthalocyanine Grafting Strategy Induces Strong Intrinsic Electric Fields and Molecule-Edge Carrier Transport Pathways for Photoelectrochemical Water Splitting

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Luo, Hui Xiao, Shengya Zhang, Ze Wang, Rongfang Zhang, Jianbin Xue, Yanjun Feng, BingZhang Lu, Peiyao Du, Xiaoquan Lu
{"title":"Phthalocyanine Grafting Strategy Induces Strong Intrinsic Electric Fields and Molecule-Edge Carrier Transport Pathways for Photoelectrochemical Water Splitting","authors":"Wei Luo, Hui Xiao, Shengya Zhang, Ze Wang, Rongfang Zhang, Jianbin Xue, Yanjun Feng, BingZhang Lu, Peiyao Du, Xiaoquan Lu","doi":"10.1002/anie.202504589","DOIUrl":null,"url":null,"abstract":"Limited charge separation, slow charge mobility, and high electron-hole recombination rates remain critical challenges impeding the efficiency of photoelectrochemical (PEC) water splitting. More regrettably, the charge transfer pathways within bulk charge transport are not yet fully understood, and the development of effective strategies to design these pathways remains a significant challenge. Herein, by optimizing the anchoring sites of small molecular ligands, we developed a molecularly functionalized layer, 4-ethyl-carbazole copper phthalocyanine (4EtCz-Pc), which is characterized by a strong dipole moment, a large internal electric field, and surprisingly positive electrostatic potential at the edge. When integrated in conjunction with the oxygen evolution cocatalyst (OEC) and the semiconductor photoanode BiVO4 (BVO), it forms a Co(OH)2/4EtCz-Pc/BiVO4 composite photoanode system. This innovative photoanode demonstrates an exceptional performance with continuous output for a duration of 15 hours. Additionally, a variety of advanced characterization methods, especially scanning photoelectrochemical microscopy (SPECM) analyses, confirmed that 4EtCz-Pc significantly reduces the energy barrier for hole injection from the anode to the active layer during PEC catalysis. This study proposes an effective strategy to optimize the ligands grafted onto phthalocyanine, generating a strong internal electric field that facilitates the formation of new charge transport pathways within the photoanode.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"18 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Limited charge separation, slow charge mobility, and high electron-hole recombination rates remain critical challenges impeding the efficiency of photoelectrochemical (PEC) water splitting. More regrettably, the charge transfer pathways within bulk charge transport are not yet fully understood, and the development of effective strategies to design these pathways remains a significant challenge. Herein, by optimizing the anchoring sites of small molecular ligands, we developed a molecularly functionalized layer, 4-ethyl-carbazole copper phthalocyanine (4EtCz-Pc), which is characterized by a strong dipole moment, a large internal electric field, and surprisingly positive electrostatic potential at the edge. When integrated in conjunction with the oxygen evolution cocatalyst (OEC) and the semiconductor photoanode BiVO4 (BVO), it forms a Co(OH)2/4EtCz-Pc/BiVO4 composite photoanode system. This innovative photoanode demonstrates an exceptional performance with continuous output for a duration of 15 hours. Additionally, a variety of advanced characterization methods, especially scanning photoelectrochemical microscopy (SPECM) analyses, confirmed that 4EtCz-Pc significantly reduces the energy barrier for hole injection from the anode to the active layer during PEC catalysis. This study proposes an effective strategy to optimize the ligands grafted onto phthalocyanine, generating a strong internal electric field that facilitates the formation of new charge transport pathways within the photoanode.
酞菁接枝策略诱导强本征电场及分子边缘载流子在光电化学水分解中的传输途径
有限的电荷分离、缓慢的电荷迁移率和高的电子-空穴复合率仍然是阻碍光电化学(PEC)水分解效率的关键挑战。更令人遗憾的是,散装电荷传输中的电荷转移途径尚未完全了解,并且开发有效的策略来设计这些途径仍然是一个重大挑战。本文通过优化小分子配体的锚定位点,我们开发了一种分子功能化层,4-乙基咔唑铜酞菁(4EtCz-Pc),该层具有强偶极矩、大内部电场和边缘惊人的正静电电位的特征。当与析氧助催化剂(OEC)和半导体光阳极BiVO4 (BVO)结合时,形成Co(OH)2/4EtCz-Pc/BiVO4复合光阳极体系。这种创新的光阳极具有连续输出15小时的优异性能。此外,各种先进的表征方法,特别是扫描光电化学显微镜(SPECM)分析,证实了4EtCz-Pc显著降低了PEC催化过程中从阳极到活性层的空穴注入的能量势垒。本研究提出了一种有效的策略来优化接枝到酞菁上的配体,产生强大的内部电场,促进光阳极内形成新的电荷传输途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信