{"title":"Highly Stable Polymeric Electrooculography Electrodes for Contactless Human-Machine Interactions","authors":"Xingge Yu, Zebang Luo, Xilin Ouyang, Wenqiang Wang, Yuxuan Rao, Yulong Yuan, Zhenpeng Cai, Youfan Hu, Li Xiang","doi":"10.1021/acssensors.5c00031","DOIUrl":null,"url":null,"abstract":"Capturing the electrooculography (EOG) signals is very attractive for assistive devices and user interfaces for virtual reality (VR) systems. However, the current EOG acquisition systems face challenges in ensuring user comfort, particularly in terms of electrode electrical and mechanical performance, long-term usability, thermal effects, and overall system portability. This study presents polymeric dry flexible electrodes, composed of a composite of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), Gallic acid (GA), and D-sorbitol, forming a dynamic cross-linked network that ensures strong adhesion, stretchability, and electrical stability. These electrodes maintain their performance for up to 72 h, and can be restored through heat reactivation if performance degrades after prolonged storage. This electrode exhibits excellent biocompatibility, causing no skin irritation or thermal effects with continuous use. We have also developed a flexible circuit for real-time signal processing and wireless transmission, which operates in coordination with the EOG electrodes. The system employs a convolutional neural network (CNN) to achieve a 97.1% accuracy in classifying various eye movement patterns. The system enables contactless control of digital interfaces through simple eye movements, offering a solution for long-term, comfortable, and high-fidelity EOG-based human-machine interfaces, particularly for VR integration and assistive technologies for individuals with disabilities.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"39 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Capturing the electrooculography (EOG) signals is very attractive for assistive devices and user interfaces for virtual reality (VR) systems. However, the current EOG acquisition systems face challenges in ensuring user comfort, particularly in terms of electrode electrical and mechanical performance, long-term usability, thermal effects, and overall system portability. This study presents polymeric dry flexible electrodes, composed of a composite of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), Gallic acid (GA), and D-sorbitol, forming a dynamic cross-linked network that ensures strong adhesion, stretchability, and electrical stability. These electrodes maintain their performance for up to 72 h, and can be restored through heat reactivation if performance degrades after prolonged storage. This electrode exhibits excellent biocompatibility, causing no skin irritation or thermal effects with continuous use. We have also developed a flexible circuit for real-time signal processing and wireless transmission, which operates in coordination with the EOG electrodes. The system employs a convolutional neural network (CNN) to achieve a 97.1% accuracy in classifying various eye movement patterns. The system enables contactless control of digital interfaces through simple eye movements, offering a solution for long-term, comfortable, and high-fidelity EOG-based human-machine interfaces, particularly for VR integration and assistive technologies for individuals with disabilities.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.