A Metformin-Based Multifunctional Nanoplatform as a DNA Damage Amplifier for Maximized Radio-Immunotherapy to Overcome Radiotherapy Resistance

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-10 DOI:10.1021/acsnano.4c18627
Shuangyan He, Yun Huang, Jia Liu, Hongdu Liu, Yalan Chen, Ting Zou, Jian Sun, WuZhou Wang, Hua Wei, Cui-Yun Yu
{"title":"A Metformin-Based Multifunctional Nanoplatform as a DNA Damage Amplifier for Maximized Radio-Immunotherapy to Overcome Radiotherapy Resistance","authors":"Shuangyan He, Yun Huang, Jia Liu, Hongdu Liu, Yalan Chen, Ting Zou, Jian Sun, WuZhou Wang, Hua Wei, Cui-Yun Yu","doi":"10.1021/acsnano.4c18627","DOIUrl":null,"url":null,"abstract":"Radiotherapy (RT) has been highlighted to be an effective strategy for antitumor immunity activation by causing direct DNA damages, but it generally suffers from low response rates due to the compromised cytosolic DNA (cDNA) recognition by cyclic GMP-AMP synthase (cGAS). Simultaneous DNA repair and clearance system regulation for enhanced cDNA accumulation is a useful approach to improve immune response rates, which remains seldom reported to our knowledge. Here, we report the construction of a metformin (MET)-based multifunctional nanocomplex, CS-MET/siTREX1 (CSMT), consisting of biguanide-decorated CS (CS-MET) as the vector and 3′-5′ DNA exonuclease TREX1 siRNA (siTREX1) as the therapeutic gene for RT-induced antitumor immunity enhancement by amplifying the initial DNA damage signals. The uniqueness of this study is the development of CSMT as a specific DNA damage amplifier to promote cDNA accumulation for maximizing radio-immunotherapy and circumventing RT resistance. Specifically, the CSMT nanocomplexes show not only enhanced gene transfection efficiency by MET modification but also synergistic therapeutic effects including MET’s inhibition on DNA repair and siTREX1’s attenuation on cDNA clearance, which leads to the greatest inhibitory effect in a Hepa1-6 proximal/distal tumor model with a high tumor growth inhibition (TGI) value of 99.1% for the primary tumor and significantly compromised distal tumor growth by inducing immunogenic cell death (ICD), promoting tumor-associated neutrophil (TAN) polarization, and stimulating tumor-specific memory T-cell generation. Overall, the CSMT nanocomplexes developed herein hold great translatable promises for overcoming RT resistance in clinics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"108 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18627","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy (RT) has been highlighted to be an effective strategy for antitumor immunity activation by causing direct DNA damages, but it generally suffers from low response rates due to the compromised cytosolic DNA (cDNA) recognition by cyclic GMP-AMP synthase (cGAS). Simultaneous DNA repair and clearance system regulation for enhanced cDNA accumulation is a useful approach to improve immune response rates, which remains seldom reported to our knowledge. Here, we report the construction of a metformin (MET)-based multifunctional nanocomplex, CS-MET/siTREX1 (CSMT), consisting of biguanide-decorated CS (CS-MET) as the vector and 3′-5′ DNA exonuclease TREX1 siRNA (siTREX1) as the therapeutic gene for RT-induced antitumor immunity enhancement by amplifying the initial DNA damage signals. The uniqueness of this study is the development of CSMT as a specific DNA damage amplifier to promote cDNA accumulation for maximizing radio-immunotherapy and circumventing RT resistance. Specifically, the CSMT nanocomplexes show not only enhanced gene transfection efficiency by MET modification but also synergistic therapeutic effects including MET’s inhibition on DNA repair and siTREX1’s attenuation on cDNA clearance, which leads to the greatest inhibitory effect in a Hepa1-6 proximal/distal tumor model with a high tumor growth inhibition (TGI) value of 99.1% for the primary tumor and significantly compromised distal tumor growth by inducing immunogenic cell death (ICD), promoting tumor-associated neutrophil (TAN) polarization, and stimulating tumor-specific memory T-cell generation. Overall, the CSMT nanocomplexes developed herein hold great translatable promises for overcoming RT resistance in clinics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信