{"title":"Deep-Learning-Assisted Microfluidic Immunoassay via Smartphone-Based Imaging Transcoding System for On-Site and Multiplexed Biosensing","authors":"Peng Lu, Yang Zhou, Xiaohu Niu, Chen Zhan, Pengzhou Lang, Yongkun Zhao, Yiping Chen","doi":"10.1021/acs.nanolett.5c01435","DOIUrl":null,"url":null,"abstract":"Point-of-care testing (POCT) with multiplexed capability, ultrahigh sensitivity, affordable smart devices, and user-friendly operation is critically needed for clinical diagnostics and food safety. This study presents a deep-learning-assisted microfluidic immunoassay platform that uses a smartphone-based imaging transcoding system, polystyrene microsphere-based encoding, and artificial-intelligence-assisted decoding. Microspheres of varying sizes act as multiprobes, with their quantities correlating to target concentrations after an immunoreaction and separation–filtration within the microfluidic chip. A smartphone with intelligent decoding software captures images of multiprobes from the chip and performs classification, counting, and concentration calculations. The “encoding–decoding” strategy and integrated microfluidic chip design allow these processes to be completed in simple steps, eliminating the need for additional immunomagnetic separation. As a proof of concept, this platform successfully detected multiple respiratory viruses and antibiotics in various real samples with high sensitivity within 30 min, demonstrating great potential as a smart, universal toolkit for next-generation POCT applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"183 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01435","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Point-of-care testing (POCT) with multiplexed capability, ultrahigh sensitivity, affordable smart devices, and user-friendly operation is critically needed for clinical diagnostics and food safety. This study presents a deep-learning-assisted microfluidic immunoassay platform that uses a smartphone-based imaging transcoding system, polystyrene microsphere-based encoding, and artificial-intelligence-assisted decoding. Microspheres of varying sizes act as multiprobes, with their quantities correlating to target concentrations after an immunoreaction and separation–filtration within the microfluidic chip. A smartphone with intelligent decoding software captures images of multiprobes from the chip and performs classification, counting, and concentration calculations. The “encoding–decoding” strategy and integrated microfluidic chip design allow these processes to be completed in simple steps, eliminating the need for additional immunomagnetic separation. As a proof of concept, this platform successfully detected multiple respiratory viruses and antibiotics in various real samples with high sensitivity within 30 min, demonstrating great potential as a smart, universal toolkit for next-generation POCT applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.