Zwitterionic liquid electrolyte with efficient Li+ transfer modulated by ion pair for low-temperature lithium battery

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Chenye Wang , Yan Dai , Rongrong Cao , Lei Bai , Jie Zhang , Wenjia Wu , Weijie Kou , Jingtao Wang
{"title":"Zwitterionic liquid electrolyte with efficient Li+ transfer modulated by ion pair for low-temperature lithium battery","authors":"Chenye Wang ,&nbsp;Yan Dai ,&nbsp;Rongrong Cao ,&nbsp;Lei Bai ,&nbsp;Jie Zhang ,&nbsp;Wenjia Wu ,&nbsp;Weijie Kou ,&nbsp;Jingtao Wang","doi":"10.1016/j.electacta.2025.146224","DOIUrl":null,"url":null,"abstract":"<div><div>Zwitterions, covalently tethered by cation and anion, show great potential in the development of safe and high-performance electrolyte owing to the inherent characteristics of non-volatility, non-flammability, and electrification but non migration. The interaction between cations and anions in zwitterionic-lithium salt electrolyte is supposed to influence the lithium ions (Li<sup>+</sup>) migration efficiency, but being rarely studied. Herein, zwitterionic liquid (ZIL) electrolytes with three different anionic groups (−PO<sub>4</sub><sup>−</sup>, −SO<sub>3</sub><sup>−</sup>, −COO<sup>−</sup>) were synthesized. We demonstrate that the −PO<sub>4</sub><sup>−</sup> group with the most negative electrostatic potential exerts the strongest competitive coordination effect on Li<sup>+</sup>, weakening Li<sup>+</sup>-TFSI<sup>−</sup> binding and promoting lithium salt dissociation. This coordination also facilitates a lower migration energy barrier for Li<sup>+</sup> and lessens intermolecular forces between zwitterions, reducing the freezing point. The ZIL-P electrolyte with the −PO<sub>4</sub><sup>−</sup> group shows high Li<sup>+</sup> transference number (0.54 at −40 °C) and ionic conductivity (1.57 × 10<sup>−4</sup> S cm<sup>−1</sup> at −20 °C), outperforming most liquid electrolytes. The enhanced Li<sup>+</sup> transfer results in excellent cycling stability, with a 98.1 % capacity retention after 500 cycles at 0.5C. Furthermore, the gel electrolyte constructed with ZIL-P and silicon-based framework improved battery performance: LFP|SiGE-ZIL-P|Li after 600 cycles with capacity retention rate of 98.5 % at 0.5C and −20 °C.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"527 ","pages":"Article 146224"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625005857","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Zwitterions, covalently tethered by cation and anion, show great potential in the development of safe and high-performance electrolyte owing to the inherent characteristics of non-volatility, non-flammability, and electrification but non migration. The interaction between cations and anions in zwitterionic-lithium salt electrolyte is supposed to influence the lithium ions (Li+) migration efficiency, but being rarely studied. Herein, zwitterionic liquid (ZIL) electrolytes with three different anionic groups (−PO4, −SO3, −COO) were synthesized. We demonstrate that the −PO4 group with the most negative electrostatic potential exerts the strongest competitive coordination effect on Li+, weakening Li+-TFSI binding and promoting lithium salt dissociation. This coordination also facilitates a lower migration energy barrier for Li+ and lessens intermolecular forces between zwitterions, reducing the freezing point. The ZIL-P electrolyte with the −PO4 group shows high Li+ transference number (0.54 at −40 °C) and ionic conductivity (1.57 × 10−4 S cm−1 at −20 °C), outperforming most liquid electrolytes. The enhanced Li+ transfer results in excellent cycling stability, with a 98.1 % capacity retention after 500 cycles at 0.5C. Furthermore, the gel electrolyte constructed with ZIL-P and silicon-based framework improved battery performance: LFP|SiGE-ZIL-P|Li after 600 cycles with capacity retention rate of 98.5 % at 0.5C and −20 °C.

Abstract Image

Abstract Image

用于低温锂电池的具有离子对调制的高效 Li+ 转移功能的共聚阴离子液态电解质
阴离子和阳离子共价拴系的两性离子具有不挥发性、不可燃性、不带电不迁移等特点,在开发安全高性能电解质方面具有很大的潜力。两性离子-锂盐电解质中阳离子与阴离子的相互作用被认为会影响锂离子(Li+)的迁移效率,但研究很少。本文合成了三种不同阴离子基团(- PO4−,- SO3−,- COO−)的两性离子液体(ZIL)电解质。结果表明,具有最大负静电势的- PO4 -基团对Li+具有最强的竞争配位效应,减弱Li+-TFSI -结合,促进锂盐解离。这种配合还有助于降低Li+的迁移能垒,并降低两性离子之间的分子间作用力,从而降低凝固点。具有- PO4 -基团的ZIL-P电解质具有较高的Li+转移数(- 40°C时为0.54)和离子电导率(- 20°C时为1.57 × 10−4 S cm−1),优于大多数液体电解质。增强的Li+转移导致了优异的循环稳定性,在0.5C下循环500次后容量保持率为98.1%。此外,用ZIL-P和硅基框架构建的凝胶电解质提高了电池性能:在0.5℃和- 20℃下,循环600次后,LFP|SiGE-ZIL-P|Li的容量保持率为98.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信