High Partial Molar Volume Polymer Electrolyte for Upgraded Lithium Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongjiang Chen, Wei Chen, Bowen Zhang, Yin Hu, Shuyin Wang, Tianyu Lei, Miao He, Yuxin Fan, Mingjie Zhou, Yichao Yan, Yuanpeng Liu, Xianfu Wang, Genqiang Zhang
{"title":"High Partial Molar Volume Polymer Electrolyte for Upgraded Lithium Metal Batteries","authors":"Dongjiang Chen, Wei Chen, Bowen Zhang, Yin Hu, Shuyin Wang, Tianyu Lei, Miao He, Yuxin Fan, Mingjie Zhou, Yichao Yan, Yuanpeng Liu, Xianfu Wang, Genqiang Zhang","doi":"10.1002/anie.202500896","DOIUrl":null,"url":null,"abstract":"Lithium (Li) metal batteries combined with solid electrolytes represent a highly promising technology for high‐energy‐density storage systems. However, their cycling performance encounters inferior stability due to the continuous growth of Li‐dendrites. The initial motivation for Li‐dendrite growth theoretically arises from the high chemical potential difference (∆μ) at the electrolyte/Li metal interface, yet the effectiveness of ∆μ regulation lacks experimental validation. Here, we experimentally present the impact of ∆μ on the growth of Li‐dendrites through manipulation of the partial molar volume of Li+ (V_(Li^+ )) in the polymer electrolyte. By weakening Li‐O coordination structure, the as‐produced high‐V_(Li^+ ) polymer electrolyte (108.5 cm3/mol) shows 83% decrease in ∆μ (289 J/mol) compared with conventional counterparts, thereby enabling stable cycling for >10 months in a Li||Li cell and >2000 cycles in a Li||Cu cell with an average Coulombic efficiency (CE) of 96%. To one's delight, a practical cylindrical Li||Li[Ni0.5Co0.3Mn0.2]O2 cell with capacity of 0.62 Ah delivers excellent cycle stability with negligible capacity attenuation over 95 cycles at 0.2 C. The beneficial role of high V_(Li^+ ) is leveraged to introduce a new dimension in polymer electrolyte engineering, highlighting the underexplored design strategy of regulating interfacial ∆μ to rejuvenate practical lithium metal batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"43 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) metal batteries combined with solid electrolytes represent a highly promising technology for high‐energy‐density storage systems. However, their cycling performance encounters inferior stability due to the continuous growth of Li‐dendrites. The initial motivation for Li‐dendrite growth theoretically arises from the high chemical potential difference (∆μ) at the electrolyte/Li metal interface, yet the effectiveness of ∆μ regulation lacks experimental validation. Here, we experimentally present the impact of ∆μ on the growth of Li‐dendrites through manipulation of the partial molar volume of Li+ (V_(Li^+ )) in the polymer electrolyte. By weakening Li‐O coordination structure, the as‐produced high‐V_(Li^+ ) polymer electrolyte (108.5 cm3/mol) shows 83% decrease in ∆μ (289 J/mol) compared with conventional counterparts, thereby enabling stable cycling for >10 months in a Li||Li cell and >2000 cycles in a Li||Cu cell with an average Coulombic efficiency (CE) of 96%. To one's delight, a practical cylindrical Li||Li[Ni0.5Co0.3Mn0.2]O2 cell with capacity of 0.62 Ah delivers excellent cycle stability with negligible capacity attenuation over 95 cycles at 0.2 C. The beneficial role of high V_(Li^+ ) is leveraged to introduce a new dimension in polymer electrolyte engineering, highlighting the underexplored design strategy of regulating interfacial ∆μ to rejuvenate practical lithium metal batteries.
用于升级锂金属电池的高偏摩尔体积聚合物电解质
锂(Li)金属电池与固体电解质的结合代表了一种非常有前途的高能量密度存储系统技术。然而,由于锂枝晶的不断生长,它们的循环性能遇到了较差的稳定性。从理论上讲,锂枝晶生长的最初动机是由电解质/锂金属界面处的高化学电位差(∆μ)引起的,但∆μ调节的有效性缺乏实验验证。在这里,我们通过操纵聚合物电解质中Li+的偏摩尔体积(V_(Li^+)),实验展示了∆μ对Li‐枝晶生长的影响。通过削弱Li - O配位结构,制备的高V_(Li^+)聚合物电解质(108.5 cm3/mol)与常规电解质相比,∆μ (289 J/mol)降低了83%,从而在Li||锂电池中稳定循环10个月,在Li||Cu电池中稳定循环2000次,平均库仑效率(CE)为96%。令人欣喜的是,一个容量为0.62 Ah的实用圆柱形Li||Li[Ni0.5Co0.3Mn0.2]O2电池在0.2℃下的95次循环中提供了出色的循环稳定性,容量衰减可以忽略。高V_(Li^+)的有益作用为聚合物电解质工程引入了一个新的维度,突出了未开发的调节界面∆μ的设计策略,以使实用的锂金属电池恢复活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信