Dynamic by Design: Unlocking Full Relaxation in Disulfide Epoxy Networks

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Paula Fanlo, Osman Konuray, Olaia Ochoteco, Marta Ximenis, Alaitz Rekondo, Hans J Grande, Xavier Fernández-Francos, Haritz Sardon, Alaitz Ruiz de Luzuriaga
{"title":"Dynamic by Design: Unlocking Full Relaxation in Disulfide Epoxy Networks","authors":"Paula Fanlo, Osman Konuray, Olaia Ochoteco, Marta Ximenis, Alaitz Rekondo, Hans J Grande, Xavier Fernández-Francos, Haritz Sardon, Alaitz Ruiz de Luzuriaga","doi":"10.1039/d5py00124b","DOIUrl":null,"url":null,"abstract":"Aromatic disulfide-containing epoxy networks offer a promising approach to achieving sustainable materials due to their reparable, recyclable, and reprocessable properties. However, in all cases, an excess of hardener is required to achieve full reparability. In this study, a theoretical analysis demonstrates that when aromatic disulfide is incorporated into the amine hardener, the resulting epoxy vitrimer does not fully relax due to epoxy group homopolymerization, which leads to the formation of non-dynamic crosslinks. To overcome this limitation, an epoxy monomer containing disulfide bonds was synthesized. This monomer enables complete relaxation, as the homopolymerized epoxy system also contributes to the formation of dynamic crosslinks. Using this new monomer, epoxy vitrimers were prepared that can relax without requiring an excess of amine. However, these materials exhibit inferior properties compared to those prepared with an aromatic disulfide-based diamine. To enhance their properties, a non-dynamic epoxy was introduced into the formulation. Both experimental and computational results demonstrate that up to 32% of non-dynamic epoxy can be incorporated without compromising dynamic features such as repairability, reprocessability, and recyclability, making this system significantly more suitable for industrial implementation.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00124b","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic disulfide-containing epoxy networks offer a promising approach to achieving sustainable materials due to their reparable, recyclable, and reprocessable properties. However, in all cases, an excess of hardener is required to achieve full reparability. In this study, a theoretical analysis demonstrates that when aromatic disulfide is incorporated into the amine hardener, the resulting epoxy vitrimer does not fully relax due to epoxy group homopolymerization, which leads to the formation of non-dynamic crosslinks. To overcome this limitation, an epoxy monomer containing disulfide bonds was synthesized. This monomer enables complete relaxation, as the homopolymerized epoxy system also contributes to the formation of dynamic crosslinks. Using this new monomer, epoxy vitrimers were prepared that can relax without requiring an excess of amine. However, these materials exhibit inferior properties compared to those prepared with an aromatic disulfide-based diamine. To enhance their properties, a non-dynamic epoxy was introduced into the formulation. Both experimental and computational results demonstrate that up to 32% of non-dynamic epoxy can be incorporated without compromising dynamic features such as repairability, reprocessability, and recyclability, making this system significantly more suitable for industrial implementation.
动态设计:开启环氧二硫网络的全面弛豫
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信