Magali S Grison, Guillaume Maucort, Amandine Dumazel, Dorian Champelovier, Yutaro Shimizu, Yohann Boutté, Mónica Fernández-Monreal, Emmanuelle M Bayer
{"title":"Root expansion microscopy: A robust method for super resolution imaging in Arabidopsis","authors":"Magali S Grison, Guillaume Maucort, Amandine Dumazel, Dorian Champelovier, Yutaro Shimizu, Yohann Boutté, Mónica Fernández-Monreal, Emmanuelle M Bayer","doi":"10.1093/plcell/koaf050","DOIUrl":null,"url":null,"abstract":"Expansion microscopy (ExM) has revolutionized biological imaging by physically enlarging samples, surpassing the light diffraction limit, and enabling nanoscale visualization using standard microscopes. While extensively employed across a wide range of biological samples, its application to plant tissues is sparse. In this work, we present ROOT-ExM, an expansion method suited for stiff and intricate multicellular plant tissues, focusing on the primary root of Arabidopsis (Arabidopsis thaliana). ROOT-ExM achieves isotropic expansion with a 4-fold increase in resolution, enabling super-resolution microscopy comparable to stimulated emission depletion (STED) microscopy. Labeling is achieved through immunolocalization, compartment-specific dyes, and native fluorescence preservation, while N-hydroxysuccinimide ester-dye conjugates reveal the ultrastructural context of cells alongside specific labeling. We successfully applied ROOT-ExM to image various organelles and subcellular compartments, including the Golgi apparatus, the endoplasmic reticulum, the cytoskeleton, and tiny wall-embedded structures such as plasmodesmata. Combination of ROOT-ExM with STED enabled reaching an unprecedented resolution of plasmodesmata by light microscopy. When combined with lattice light sheet microscopy, ROOT-ExM enabled 3D quantitative analysis of nanoscale cellular processes, such as the size quantification of vesicles near the cell plate during cell division. Achieving super-resolution fluorescence imaging in plant biology remains a formidable challenge. Our findings underscore that ROOT-ExM provides a remarkable, cost-effective solution to this challenge, paving the way for valuable insights into plant subcellular architecture.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Expansion microscopy (ExM) has revolutionized biological imaging by physically enlarging samples, surpassing the light diffraction limit, and enabling nanoscale visualization using standard microscopes. While extensively employed across a wide range of biological samples, its application to plant tissues is sparse. In this work, we present ROOT-ExM, an expansion method suited for stiff and intricate multicellular plant tissues, focusing on the primary root of Arabidopsis (Arabidopsis thaliana). ROOT-ExM achieves isotropic expansion with a 4-fold increase in resolution, enabling super-resolution microscopy comparable to stimulated emission depletion (STED) microscopy. Labeling is achieved through immunolocalization, compartment-specific dyes, and native fluorescence preservation, while N-hydroxysuccinimide ester-dye conjugates reveal the ultrastructural context of cells alongside specific labeling. We successfully applied ROOT-ExM to image various organelles and subcellular compartments, including the Golgi apparatus, the endoplasmic reticulum, the cytoskeleton, and tiny wall-embedded structures such as plasmodesmata. Combination of ROOT-ExM with STED enabled reaching an unprecedented resolution of plasmodesmata by light microscopy. When combined with lattice light sheet microscopy, ROOT-ExM enabled 3D quantitative analysis of nanoscale cellular processes, such as the size quantification of vesicles near the cell plate during cell division. Achieving super-resolution fluorescence imaging in plant biology remains a formidable challenge. Our findings underscore that ROOT-ExM provides a remarkable, cost-effective solution to this challenge, paving the way for valuable insights into plant subcellular architecture.