NAL1 forms a molecular cage to regulate FZP phase separation

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ling-Yun Huang, Ting-Ting Wang, Peng-Tao Shi, Ze-Yu Song, Wei-Fei Chen, Na-Nv Liu, Xia Ai, Hai-Hong Li, Xi-Miao Hou, Li-Bing Wang, Kun-Ming Chen, Stephane Rety, Xu-Guang Xi
{"title":"NAL1 forms a molecular cage to regulate FZP phase separation","authors":"Ling-Yun Huang, Ting-Ting Wang, Peng-Tao Shi, Ze-Yu Song, Wei-Fei Chen, Na-Nv Liu, Xia Ai, Hai-Hong Li, Xi-Miao Hou, Li-Bing Wang, Kun-Ming Chen, Stephane Rety, Xu-Guang Xi","doi":"10.1073/pnas.2419961122","DOIUrl":null,"url":null,"abstract":"<jats:italic>NARROW LEAF 1</jats:italic> ( <jats:italic>NAL1</jats:italic> ), originally identified for its role in shaping leaf morphology, plant architecture, and various agronomic traits in rice, has remained enigmatic in terms of the molecular mechanisms governing its multifaceted functions. In this study, we present a comprehensive structural analysis of NAL1 proteins, shedding light on how NAL1 regulates the phase separation of its physiological substrate, FRIZZY PANICLE (FZP), a transcription factor. We determined that NAL1 assembles as a hexamer and forms a molecular cage with a wide central channel and three narrower lateral channels, which could discriminate its different substrates into the catalytic sites. Most notably, our investigation unveils that FZP readily forms molecular condensates via phase separation both in vitro and in vivo. NAL1 fine-tunes FZP condensation, maintaining optimal concentrations to enhance transcriptional activity. While phase separation roles include sequestration and suppression of transcriptional or enzymatic activity, our study highlights its context-dependent contribution to transcriptional regulation. NAL1 assumes a pivotal role in regulating the states of these molecular condensates through its proteolytic activity, subsequently enhancing transcriptional cascades. Our findings offer insights into comprehending the molecular mechanisms underpinning NAL1’s diverse functions, with far-reaching implications for the field of plant biology. Additionally, these insights provide valuable guidance for the development of rational breeding strategies aimed at enhancing crop productivity.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419961122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

NARROW LEAF 1 ( NAL1 ), originally identified for its role in shaping leaf morphology, plant architecture, and various agronomic traits in rice, has remained enigmatic in terms of the molecular mechanisms governing its multifaceted functions. In this study, we present a comprehensive structural analysis of NAL1 proteins, shedding light on how NAL1 regulates the phase separation of its physiological substrate, FRIZZY PANICLE (FZP), a transcription factor. We determined that NAL1 assembles as a hexamer and forms a molecular cage with a wide central channel and three narrower lateral channels, which could discriminate its different substrates into the catalytic sites. Most notably, our investigation unveils that FZP readily forms molecular condensates via phase separation both in vitro and in vivo. NAL1 fine-tunes FZP condensation, maintaining optimal concentrations to enhance transcriptional activity. While phase separation roles include sequestration and suppression of transcriptional or enzymatic activity, our study highlights its context-dependent contribution to transcriptional regulation. NAL1 assumes a pivotal role in regulating the states of these molecular condensates through its proteolytic activity, subsequently enhancing transcriptional cascades. Our findings offer insights into comprehending the molecular mechanisms underpinning NAL1’s diverse functions, with far-reaching implications for the field of plant biology. Additionally, these insights provide valuable guidance for the development of rational breeding strategies aimed at enhancing crop productivity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信