Two transcription factors play critical roles in mediating epigenetic regulation of fruit ripening in tomato

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qingfeng Niu, Yaping Xu, Huan Huang, Linzhu Li, Dengguo Tang, Siqun Wu, Ping Liu, Ruie Liu, Yu Ma, Bo Zhang, Jian-Kang Zhu, Zhaobo Lang
{"title":"Two transcription factors play critical roles in mediating epigenetic regulation of fruit ripening in tomato","authors":"Qingfeng Niu, Yaping Xu, Huan Huang, Linzhu Li, Dengguo Tang, Siqun Wu, Ping Liu, Ruie Liu, Yu Ma, Bo Zhang, Jian-Kang Zhu, Zhaobo Lang","doi":"10.1073/pnas.2422798122","DOIUrl":null,"url":null,"abstract":"DNA methylation regulates fruit ripening in tomato, and disruption of the DNA demethylase DEMETER-LIKE 2 (DML2) results in genome-wide DNA hypermethylation and impaired ripening. We report here that the transcription factors Ripening Inhibitor (RIN) and FRUITFULL 1 (FUL1) play critical roles in mediating the effect of DNA methylation on tomato fruit ripening. <jats:italic>RIN</jats:italic> and <jats:italic>FUL1</jats:italic> are silenced in <jats:italic>dml2</jats:italic> mutant plants, and the defective ripening phenotype of <jats:italic>dml2</jats:italic> is mimicked by the <jats:italic>rin/ful1</jats:italic> double mutant. Restoration of <jats:italic>RIN</jats:italic> expression in <jats:italic>dml2</jats:italic> partially rescues its ripening defects. DNA methylation controls ripening not only by regulating the expression of <jats:italic>RIN</jats:italic> and <jats:italic>FUL1</jats:italic> but also by interfering with the genomic binding of RIN. In <jats:italic>dml2</jats:italic> mutant plants, RIN cannot bind to some of its targets in vivo even though DNA methylation does not interfere with RIN binding in vitro; this inhibited binding in vivo is correlated with increased DNA methylation and histone H3 enrichment within 100 bp of the binding site. Our work uncovers the molecular mechanisms underlying DNA methylation control of fruit ripening in tomato.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"58 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2422798122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

DNA methylation regulates fruit ripening in tomato, and disruption of the DNA demethylase DEMETER-LIKE 2 (DML2) results in genome-wide DNA hypermethylation and impaired ripening. We report here that the transcription factors Ripening Inhibitor (RIN) and FRUITFULL 1 (FUL1) play critical roles in mediating the effect of DNA methylation on tomato fruit ripening. RIN and FUL1 are silenced in dml2 mutant plants, and the defective ripening phenotype of dml2 is mimicked by the rin/ful1 double mutant. Restoration of RIN expression in dml2 partially rescues its ripening defects. DNA methylation controls ripening not only by regulating the expression of RIN and FUL1 but also by interfering with the genomic binding of RIN. In dml2 mutant plants, RIN cannot bind to some of its targets in vivo even though DNA methylation does not interfere with RIN binding in vitro; this inhibited binding in vivo is correlated with increased DNA methylation and histone H3 enrichment within 100 bp of the binding site. Our work uncovers the molecular mechanisms underlying DNA methylation control of fruit ripening in tomato.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信