Zunchi Liu, Philippe Ciais, Josep Peñuelas, Jianyang Xia, Sha Zhou, Yao Zhang, Yongshuo H. Fu
{"title":"Enhanced vegetation productivity driven primarily by rate not duration of carbon uptake","authors":"Zunchi Liu, Philippe Ciais, Josep Peñuelas, Jianyang Xia, Sha Zhou, Yao Zhang, Yongshuo H. Fu","doi":"10.1038/s41558-025-02311-3","DOIUrl":null,"url":null,"abstract":"<p>Climate change is altering both the duration and the rate of carbon uptake in plants, thereby affecting terrestrial gross primary productivity (GPP). However, little is known about the relative strengths of these processes or underlying mechanisms. Here, using satellite and carbon-flux data, we show that the duration and mean daily rate of carbon uptake (GPP<sub>rate</sub>) have both increased in recent decades, enhancing total GPP with a rate of ~0.56% per year during the growing season across the Northern Hemisphere. Notably, the mean daily GPP<sub>rate</sub>, driven primarily by rising CO<sub>2</sub> concentrations and temperatures, contributed ~65% to the changes in total GPP during the growing season over time, with higher contributions in early season (~83%) compared with late season (~55%). These findings highlight the importance of vegetation physiology in driving temporal changes in terrestrial GPP and suggest that the asymmetric changes in productivity across seasons will exacerbate under ongoing climate change.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"377 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02311-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is altering both the duration and the rate of carbon uptake in plants, thereby affecting terrestrial gross primary productivity (GPP). However, little is known about the relative strengths of these processes or underlying mechanisms. Here, using satellite and carbon-flux data, we show that the duration and mean daily rate of carbon uptake (GPPrate) have both increased in recent decades, enhancing total GPP with a rate of ~0.56% per year during the growing season across the Northern Hemisphere. Notably, the mean daily GPPrate, driven primarily by rising CO2 concentrations and temperatures, contributed ~65% to the changes in total GPP during the growing season over time, with higher contributions in early season (~83%) compared with late season (~55%). These findings highlight the importance of vegetation physiology in driving temporal changes in terrestrial GPP and suggest that the asymmetric changes in productivity across seasons will exacerbate under ongoing climate change.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.