{"title":"Strigolactones enhance apple drought resistance via the MsABI5-MsSMXL1-MsNAC022 cascade","authors":"Xiang Zhang, BingYang Du, Maihemuti Turupu, Yuqin Xiao, Qisheng Yao, Shilin Gai, Qiaoqiao Zhang, Xinyu Wang, Yongzhen Yan, Zhengyang Wen, Shuo Wang, Wenjun Lu, Pengtao Yue, Tianhong Li","doi":"10.1093/hr/uhaf101","DOIUrl":null,"url":null,"abstract":"Drought stress limits plant growth, development, and yield in apple (Malus). Strigolactones (SLs) work with abscisic acid (ABA) to improve drought resistance in plants, but how this synergistic mechanism functions remains unclear. Here, we determined that SLs promote drought resistance in apple in an ABSCISIC ACID INSENSITIVE5 (MsABI5)-related manner. During drought stress of a wild apple species (Malus sieversii), SLs enhanced the expression of MsABI5, encoding a major transcription factor involved in ABA signaling. MsABI5 bound to the promoter of the gene encoding delta-1-pyrroline-5-carboxylate synthase (MsP5CS2.2), upregulating its expression and thereby enhancing proline accumulation and drought resistance. In addition, MsABI5 suppressed the expression of MsSMXL1, encoding a major transcriptional repressor involved in SL signaling. MsSMXL1 interacted with MsNAC022 instead of MsABI5 to repress the transactivation activity of MsNAC022. MsNAC022 was upregulated by MsABI5, and MsNAC022 directly promoted MsP5CS2.2 expression to enhance proline accumulation and drought resistance. These findings suggest that MsSMXL1 and MsNAC022 comprise a regulatory node downstream of MsABI5 during drought stress in apple. Together, our findings suggest that in apple, SLs increase drought resistance by activating the MsABI5-MsSMXL1-MsNAC022 cascade.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"32 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf101","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress limits plant growth, development, and yield in apple (Malus). Strigolactones (SLs) work with abscisic acid (ABA) to improve drought resistance in plants, but how this synergistic mechanism functions remains unclear. Here, we determined that SLs promote drought resistance in apple in an ABSCISIC ACID INSENSITIVE5 (MsABI5)-related manner. During drought stress of a wild apple species (Malus sieversii), SLs enhanced the expression of MsABI5, encoding a major transcription factor involved in ABA signaling. MsABI5 bound to the promoter of the gene encoding delta-1-pyrroline-5-carboxylate synthase (MsP5CS2.2), upregulating its expression and thereby enhancing proline accumulation and drought resistance. In addition, MsABI5 suppressed the expression of MsSMXL1, encoding a major transcriptional repressor involved in SL signaling. MsSMXL1 interacted with MsNAC022 instead of MsABI5 to repress the transactivation activity of MsNAC022. MsNAC022 was upregulated by MsABI5, and MsNAC022 directly promoted MsP5CS2.2 expression to enhance proline accumulation and drought resistance. These findings suggest that MsSMXL1 and MsNAC022 comprise a regulatory node downstream of MsABI5 during drought stress in apple. Together, our findings suggest that in apple, SLs increase drought resistance by activating the MsABI5-MsSMXL1-MsNAC022 cascade.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.