Enhancing catalytic durability in alkaline oxygen evolution reaction through squaric acid anion intercalation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruoyao Fan, Shanshan Lu, Fuli Wang, Yusheng Zhang, Mirabbos Hojamberdiev, Yongming Chai, Bin Dong, Bin Zhang
{"title":"Enhancing catalytic durability in alkaline oxygen evolution reaction through squaric acid anion intercalation","authors":"Ruoyao Fan, Shanshan Lu, Fuli Wang, Yusheng Zhang, Mirabbos Hojamberdiev, Yongming Chai, Bin Dong, Bin Zhang","doi":"10.1038/s41467-025-58623-7","DOIUrl":null,"url":null,"abstract":"<p>The corrosive acidic interfacial microenvironment caused by rapid multi-step deprotonation of alkaline oxygen evolution reaction in industrial high current water electrolysis is one of the key problems limiting its stability. Some functional anions derived from electrocatalysis exhibit special functionalities in modulating the interface microenvironment, but this matter has not received adequate attention in academic discussions. Here we show that the coordinate squaric acid undergoes a dissolve-re-intercalation process in alkaline oxygen evolution, leading to its stabilization within the Fe-doped NiOOH interlayer in the form of the squaric acid anions (NiFe-SQ/NF-R). These intercalated squaric acid anions stabilizes OH<sup>−</sup> through multiple hydrogen bond interactions, which is conducive to maintaining high catalytic interface alkalinity. Hence, the interfacial acidification of prepared NiFe-SQ/NF-R is inhibited, resulting in a tenfold prolong in its catalytic durability (from 65 to 700 h) when exposed to 3.0 A cm<sup>−2</sup>, as opposed to NiFe-LDH/NF-R. This derived functional anion guarantees the enduring performance of the NiFe-derived electrocatalyst under high current densities by controlling the interfacial alkalinity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"108 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58623-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The corrosive acidic interfacial microenvironment caused by rapid multi-step deprotonation of alkaline oxygen evolution reaction in industrial high current water electrolysis is one of the key problems limiting its stability. Some functional anions derived from electrocatalysis exhibit special functionalities in modulating the interface microenvironment, but this matter has not received adequate attention in academic discussions. Here we show that the coordinate squaric acid undergoes a dissolve-re-intercalation process in alkaline oxygen evolution, leading to its stabilization within the Fe-doped NiOOH interlayer in the form of the squaric acid anions (NiFe-SQ/NF-R). These intercalated squaric acid anions stabilizes OH through multiple hydrogen bond interactions, which is conducive to maintaining high catalytic interface alkalinity. Hence, the interfacial acidification of prepared NiFe-SQ/NF-R is inhibited, resulting in a tenfold prolong in its catalytic durability (from 65 to 700 h) when exposed to 3.0 A cm−2, as opposed to NiFe-LDH/NF-R. This derived functional anion guarantees the enduring performance of the NiFe-derived electrocatalyst under high current densities by controlling the interfacial alkalinity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信