Ruoyao Fan, Shanshan Lu, Fuli Wang, Yusheng Zhang, Mirabbos Hojamberdiev, Yongming Chai, Bin Dong, Bin Zhang
{"title":"Enhancing catalytic durability in alkaline oxygen evolution reaction through squaric acid anion intercalation","authors":"Ruoyao Fan, Shanshan Lu, Fuli Wang, Yusheng Zhang, Mirabbos Hojamberdiev, Yongming Chai, Bin Dong, Bin Zhang","doi":"10.1038/s41467-025-58623-7","DOIUrl":null,"url":null,"abstract":"<p>The corrosive acidic interfacial microenvironment caused by rapid multi-step deprotonation of alkaline oxygen evolution reaction in industrial high current water electrolysis is one of the key problems limiting its stability. Some functional anions derived from electrocatalysis exhibit special functionalities in modulating the interface microenvironment, but this matter has not received adequate attention in academic discussions. Here we show that the coordinate squaric acid undergoes a dissolve-re-intercalation process in alkaline oxygen evolution, leading to its stabilization within the Fe-doped NiOOH interlayer in the form of the squaric acid anions (NiFe-SQ/NF-R). These intercalated squaric acid anions stabilizes OH<sup>−</sup> through multiple hydrogen bond interactions, which is conducive to maintaining high catalytic interface alkalinity. Hence, the interfacial acidification of prepared NiFe-SQ/NF-R is inhibited, resulting in a tenfold prolong in its catalytic durability (from 65 to 700 h) when exposed to 3.0 A cm<sup>−2</sup>, as opposed to NiFe-LDH/NF-R. This derived functional anion guarantees the enduring performance of the NiFe-derived electrocatalyst under high current densities by controlling the interfacial alkalinity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"108 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58623-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The corrosive acidic interfacial microenvironment caused by rapid multi-step deprotonation of alkaline oxygen evolution reaction in industrial high current water electrolysis is one of the key problems limiting its stability. Some functional anions derived from electrocatalysis exhibit special functionalities in modulating the interface microenvironment, but this matter has not received adequate attention in academic discussions. Here we show that the coordinate squaric acid undergoes a dissolve-re-intercalation process in alkaline oxygen evolution, leading to its stabilization within the Fe-doped NiOOH interlayer in the form of the squaric acid anions (NiFe-SQ/NF-R). These intercalated squaric acid anions stabilizes OH− through multiple hydrogen bond interactions, which is conducive to maintaining high catalytic interface alkalinity. Hence, the interfacial acidification of prepared NiFe-SQ/NF-R is inhibited, resulting in a tenfold prolong in its catalytic durability (from 65 to 700 h) when exposed to 3.0 A cm−2, as opposed to NiFe-LDH/NF-R. This derived functional anion guarantees the enduring performance of the NiFe-derived electrocatalyst under high current densities by controlling the interfacial alkalinity.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.