Heidi Fischer, Lei Qian, Zhuoxin Li, Katia Bruxvoort, Jacek Skarbinski, Yuching Ni, Jennifer H. Ku, Bruno Lewin, Saadiq Garba, Parag Mahale, Sally F. Shaw, Brigitte Spence, Sara Y. Tartof
{"title":"Development and validation of prediction algorithm to identify tuberculosis in two large California health systems","authors":"Heidi Fischer, Lei Qian, Zhuoxin Li, Katia Bruxvoort, Jacek Skarbinski, Yuching Ni, Jennifer H. Ku, Bruno Lewin, Saadiq Garba, Parag Mahale, Sally F. Shaw, Brigitte Spence, Sara Y. Tartof","doi":"10.1038/s41467-025-58775-6","DOIUrl":null,"url":null,"abstract":"<p>California data demonstrate failures in latent tuberculosis screening to prevent progression to tuberculosis disease. Therefore, we developed a clinical risk prediction model for tuberculosis disease using electronic health records. This study included Kaiser Permanente Southern California and Northern California members ≥18 years during 2008-2019. Models used Cox proportional hazards regression, Harrell’s C-statistic, and a simulated TB disease outcome accounting for cases prevented by current screening which includes both observed and simulated cases. We compared sensitivity and number-needed-to-screen for model-identified high-risk individuals with current screening. Of 4,032,619 and 4,051,873 Southern and Northern California members, tuberculosis disease incidences were 4.1 and 3.3 cases per 100,000 person-years, respectively. The final model C-statistic was 0.816 (95% simulation interval 0.805-0.824). Model sensitivity screening high-risk individuals was 0.70 (0.68-0.71) and number-needed-to-screen was 662 (646-679) persons-per tuberculosis disease case, compared to a sensitivity of 0.36 (0.34-0.38) and number-needed-to-screen of 1632 (1485-1774) with current screening. Here, we show our predictive model improves tuberculosis screening efficiency in California.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58775-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
California data demonstrate failures in latent tuberculosis screening to prevent progression to tuberculosis disease. Therefore, we developed a clinical risk prediction model for tuberculosis disease using electronic health records. This study included Kaiser Permanente Southern California and Northern California members ≥18 years during 2008-2019. Models used Cox proportional hazards regression, Harrell’s C-statistic, and a simulated TB disease outcome accounting for cases prevented by current screening which includes both observed and simulated cases. We compared sensitivity and number-needed-to-screen for model-identified high-risk individuals with current screening. Of 4,032,619 and 4,051,873 Southern and Northern California members, tuberculosis disease incidences were 4.1 and 3.3 cases per 100,000 person-years, respectively. The final model C-statistic was 0.816 (95% simulation interval 0.805-0.824). Model sensitivity screening high-risk individuals was 0.70 (0.68-0.71) and number-needed-to-screen was 662 (646-679) persons-per tuberculosis disease case, compared to a sensitivity of 0.36 (0.34-0.38) and number-needed-to-screen of 1632 (1485-1774) with current screening. Here, we show our predictive model improves tuberculosis screening efficiency in California.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.