Electroencephalogram-based time-frequency analysis for Alzheimer's disease detection using machine learning.

Journal of biological methods Pub Date : 2024-11-26 eCollection Date: 2025-01-01 DOI:10.14440/jbm.2025.0069
Sérgio Daniel Rodrigues, Pedro Miguel Rodrigues
{"title":"Electroencephalogram-based time-frequency analysis for Alzheimer's disease detection using machine learning.","authors":"Sérgio Daniel Rodrigues, Pedro Miguel Rodrigues","doi":"10.14440/jbm.2025.0069","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is the most common form of dementia. The lack of effective prevention or cure makes AD a significant concern, as it is a progressive disease with symptoms that worsen over time.</p><p><strong>Objective: </strong>The aim of this study is to develop an algorithm capable of differentiating between patients with early-stage AD (mild cognitive impairment [MCI]), moderate AD, and healthy controls (C) using electroencephalogram (EEG) signals.</p><p><strong>Methods: </strong>A publicly available EEG database was utilized, with seven EEG recordings selected from each study group (MCI, AD, and C) to ensure a balanced dataset. For each 1-s segment of EEG data, 43 time-frequency features were computed. These features were then compressed over time using 10 statistical measures. Subsequently, 15 classifiers were employed to distinguish between paired groups using a 7-fold cross-validation.</p><p><strong>Results: </strong>The strategy yielded better results than state-of-the-art methods, achieving a 100% accuracy in both C versus MCI and C versus AD binary classifications. This improvement translated to a 2% increase in accuracy for C versus MCI and a 4% increase for C versus AD, despite a 1.2% decrease in performance for AD versus MCI. In addition, the proposed method outperformed prior work on the same database by 4.8% for the AD versus MCI comparison.</p><p><strong>Conclusion: </strong>The present study highlights the potential of EEG as a promising tool for early AD diagnosis. Nevertheless, a more extensive database should be used to enhance the generalizability of the results in future work.</p>","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"12 1","pages":"e99010042"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2025.0069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease (AD) is the most common form of dementia. The lack of effective prevention or cure makes AD a significant concern, as it is a progressive disease with symptoms that worsen over time.

Objective: The aim of this study is to develop an algorithm capable of differentiating between patients with early-stage AD (mild cognitive impairment [MCI]), moderate AD, and healthy controls (C) using electroencephalogram (EEG) signals.

Methods: A publicly available EEG database was utilized, with seven EEG recordings selected from each study group (MCI, AD, and C) to ensure a balanced dataset. For each 1-s segment of EEG data, 43 time-frequency features were computed. These features were then compressed over time using 10 statistical measures. Subsequently, 15 classifiers were employed to distinguish between paired groups using a 7-fold cross-validation.

Results: The strategy yielded better results than state-of-the-art methods, achieving a 100% accuracy in both C versus MCI and C versus AD binary classifications. This improvement translated to a 2% increase in accuracy for C versus MCI and a 4% increase for C versus AD, despite a 1.2% decrease in performance for AD versus MCI. In addition, the proposed method outperformed prior work on the same database by 4.8% for the AD versus MCI comparison.

Conclusion: The present study highlights the potential of EEG as a promising tool for early AD diagnosis. Nevertheless, a more extensive database should be used to enhance the generalizability of the results in future work.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信