{"title":"Evaluation of Image Quality of Temporal Maximum Intensity Projection and Average Intensity Projection of Adaptive 4D-Spiral CT Scans: A Phantom Study.","authors":"Hiroki Horinouchi, Toshinori Sekitani, Tatsuya Nishii, Noriyuki Negi, Keitaro Sofue, Tetsuya Fukuda, Satoru Takahashi","doi":"10.7759/cureus.81849","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive four-dimensional (4D) spiral computed tomography (CT) scans facilitate the acquisition of volume perfusion data for organs or long-range vessels; however, optimizing image quality and reducing noise while minimizing radiation doses remains challenging. Thus, image-processing techniques such as temporal maximum intensity projection (MIP) and average intensity projection (AIP) are crucial in this context. This ex vivo study aimed to compare the image noise, spatial resolution, and measurements of temporal MIP and AIP images generated from low radiation dose 4D CT scans data with those of conventional CT images using phantoms. Three phantoms were scanned with equivalent radiation doses using single helical and adaptive 10-phase 4D spiral scans using a third-generation dual-source CT scanner. Temporal MIP and AIP images of 4D CT scans were generated by summing varying numbers of phases, incorporating automatic motion correction with non-rigid registration and noise reduction algorithm. The CT values and image noise of the temporal MIP and AIP images were compared to conventional CT images. The task transfer function (TTF) was calculated using static phantoms. Vessel diameters of the phantoms for each image dataset were evaluated using motion phantoms. Temporal AIP images showed comparable CT values with those of the reference image. In contrast, the CT values of the temporal MIP images were significantly higher than those of the reference images (p<0.01). The image noise of temporal AIP images with six or more phases was equal to or lower than that of the reference images. In contrast, temporal MIP images exhibited consistently high noise levels regardless of the number of summed phases. The TTF of temporal AIP images was comparable to that of the reference CT images. However, the TTF of temporal MIP images gradually decreased as the number of summed phases increased. No significant differences were observed in vessel diameter measurements among the three groups or with varying numbers of summed phases (p>0.05). In conclusion, temporal MIP and AIP images generated from low radiation dose 4D CT scans could effectively reduce noise while preserving measurement reliability in the motion phantom, achieving performance comparable to conventional CT images.</p>","PeriodicalId":93960,"journal":{"name":"Cureus","volume":"17 4","pages":"e81849"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cureus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7759/cureus.81849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive four-dimensional (4D) spiral computed tomography (CT) scans facilitate the acquisition of volume perfusion data for organs or long-range vessels; however, optimizing image quality and reducing noise while minimizing radiation doses remains challenging. Thus, image-processing techniques such as temporal maximum intensity projection (MIP) and average intensity projection (AIP) are crucial in this context. This ex vivo study aimed to compare the image noise, spatial resolution, and measurements of temporal MIP and AIP images generated from low radiation dose 4D CT scans data with those of conventional CT images using phantoms. Three phantoms were scanned with equivalent radiation doses using single helical and adaptive 10-phase 4D spiral scans using a third-generation dual-source CT scanner. Temporal MIP and AIP images of 4D CT scans were generated by summing varying numbers of phases, incorporating automatic motion correction with non-rigid registration and noise reduction algorithm. The CT values and image noise of the temporal MIP and AIP images were compared to conventional CT images. The task transfer function (TTF) was calculated using static phantoms. Vessel diameters of the phantoms for each image dataset were evaluated using motion phantoms. Temporal AIP images showed comparable CT values with those of the reference image. In contrast, the CT values of the temporal MIP images were significantly higher than those of the reference images (p<0.01). The image noise of temporal AIP images with six or more phases was equal to or lower than that of the reference images. In contrast, temporal MIP images exhibited consistently high noise levels regardless of the number of summed phases. The TTF of temporal AIP images was comparable to that of the reference CT images. However, the TTF of temporal MIP images gradually decreased as the number of summed phases increased. No significant differences were observed in vessel diameter measurements among the three groups or with varying numbers of summed phases (p>0.05). In conclusion, temporal MIP and AIP images generated from low radiation dose 4D CT scans could effectively reduce noise while preserving measurement reliability in the motion phantom, achieving performance comparable to conventional CT images.