Ionizing radiation resilience: how metabolically active lichens endure exposure to the simulated Mars atmosphere.

IF 5.2 1区 生物学 Q1 MYCOLOGY
Ima Fungus Pub Date : 2025-03-31 eCollection Date: 2025-01-01 DOI:10.3897/imafungus.16.145477
Kaja Skubała, Karolina Chowaniec, Mirosław Kowaliński, Tomasz Mrozek, Jarosław Bąkała, Ewa Latkowska, Beata Myśliwa-Kurdziel
{"title":"Ionizing radiation resilience: how metabolically active lichens endure exposure to the simulated Mars atmosphere.","authors":"Kaja Skubała, Karolina Chowaniec, Mirosław Kowaliński, Tomasz Mrozek, Jarosław Bąkała, Ewa Latkowska, Beata Myśliwa-Kurdziel","doi":"10.3897/imafungus.16.145477","DOIUrl":null,"url":null,"abstract":"<p><p>To deepen our understanding of lichen adaptation and their potential to colonize extraterrestrial environments, we aimed to identify physiological/biochemical responses of selected lichen species in a metabolically active state to simulated Mars-like conditions in the dark including exposure to X-rays. Our study is the first to demonstrate that the metabolism of the fungal partner in lichen symbiosis was active while being in a Mars-like environment. <i>Diploschistesmuscorum</i> was able to activate defense mechanisms effectively. In contrast, increased oxidative stress and associated damage were not effectively balanced in <i>C.aculeata</i>, which does not support the melanin's radioprotective function in this species. The heavy crystalline deposit on <i>D.muscorum</i> thallus might offer protection enhancing lichen resistance to extreme conditions. We concluded that metabolically active <i>D.muscorum</i> can withstand the X-ray dose expected on the Mars surface over one year of strong solar activity. Consequently, X-rays associated with solar flares and SEPs reaching Mars should not affect the potential habitability of lichens on this planet.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e145477"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/imafungus.16.145477","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To deepen our understanding of lichen adaptation and their potential to colonize extraterrestrial environments, we aimed to identify physiological/biochemical responses of selected lichen species in a metabolically active state to simulated Mars-like conditions in the dark including exposure to X-rays. Our study is the first to demonstrate that the metabolism of the fungal partner in lichen symbiosis was active while being in a Mars-like environment. Diploschistesmuscorum was able to activate defense mechanisms effectively. In contrast, increased oxidative stress and associated damage were not effectively balanced in C.aculeata, which does not support the melanin's radioprotective function in this species. The heavy crystalline deposit on D.muscorum thallus might offer protection enhancing lichen resistance to extreme conditions. We concluded that metabolically active D.muscorum can withstand the X-ray dose expected on the Mars surface over one year of strong solar activity. Consequently, X-rays associated with solar flares and SEPs reaching Mars should not affect the potential habitability of lichens on this planet.

为了加深我们对地衣的适应性及其在地外环境中定居的潜力的了解,我们的目的是确定新陈代谢活跃的某些地衣物种对模拟火星环境(包括暴露于X射线)的生理/生化反应。我们的研究首次证明,地衣共生中的真菌伙伴在类火星环境中的新陈代谢是活跃的。Diploschistesmuscorum 能够有效激活防御机制。相比之下,C.aculeata 上增加的氧化应激和相关损害并没有得到有效平衡,这并不支持黑色素在该物种中的辐射防护功能。D.muscorum 苔藓上的重晶体沉积物可能会提供保护,增强地衣对极端条件的抵抗力。我们得出的结论是,新陈代谢活跃的D.muscorum地衣可以承受火星表面一年强烈太阳活动所产生的X射线剂量。因此,与到达火星的太阳耀斑和SEP相关的X射线应该不会影响地衣在这颗行星上的潜在可居住性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ima Fungus
Ima Fungus Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍: The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信