Allele-specific silencing of a dominant SETX mutation in familial amyotrophic lateral sclerosis type 4.

IF 3.3 Q2 GENETICS & HEREDITY
Audrey Winkelsas, Athena Apfel, Brian Johnson, George Harmison, Kimberly Diaz Perez, Dongjun Li, Vivian G Cheung, Christopher Grunseich
{"title":"Allele-specific silencing of a dominant SETX mutation in familial amyotrophic lateral sclerosis type 4.","authors":"Audrey Winkelsas, Athena Apfel, Brian Johnson, George Harmison, Kimberly Diaz Perez, Dongjun Li, Vivian G Cheung, Christopher Grunseich","doi":"10.1016/j.xhgg.2025.100435","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis 4 (ALS4) is an autosomal dominant motor neuron disease that is molecularly characterized by reduced R-loop levels and caused by pathogenic variants in senataxin (SETX). SETX encodes an RNA/DNA helicase that resolves three-stranded nucleic acid structures called R-loops. Currently, there are no disease-modifying therapies available for ALS4. Given that SETX is haplosufficient, removing the product of the mutated allele presents a potential therapeutic strategy. We designed a series of siRNAs to selectively target the RNA transcript from the ALS4 allele containing the c.1166T>C mutation (p.Leu389Ser). Transfection of HEK293 cells with siRNA and plasmids encoding either wild-type or mutant (Leu389Ser) epitope-tagged SETX revealed that three siRNAs specifically reduced mutant SETX protein levels while having minimal effect on the wild-type SETX protein. In ALS4 primary fibroblasts, siRNA treatment silenced the endogenous mutant SETX allele, while sparing the wild-type allele, and restored R-loop levels in patient cells. Our findings demonstrate that mutant SETX, differing from wild-type by a single nucleotide, can be effectively and specifically silenced by RNA interference.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100435"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Amyotrophic lateral sclerosis 4 (ALS4) is an autosomal dominant motor neuron disease that is molecularly characterized by reduced R-loop levels and caused by pathogenic variants in senataxin (SETX). SETX encodes an RNA/DNA helicase that resolves three-stranded nucleic acid structures called R-loops. Currently, there are no disease-modifying therapies available for ALS4. Given that SETX is haplosufficient, removing the product of the mutated allele presents a potential therapeutic strategy. We designed a series of siRNAs to selectively target the RNA transcript from the ALS4 allele containing the c.1166T>C mutation (p.Leu389Ser). Transfection of HEK293 cells with siRNA and plasmids encoding either wild-type or mutant (Leu389Ser) epitope-tagged SETX revealed that three siRNAs specifically reduced mutant SETX protein levels while having minimal effect on the wild-type SETX protein. In ALS4 primary fibroblasts, siRNA treatment silenced the endogenous mutant SETX allele, while sparing the wild-type allele, and restored R-loop levels in patient cells. Our findings demonstrate that mutant SETX, differing from wild-type by a single nucleotide, can be effectively and specifically silenced by RNA interference.

求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信