Predicting Major Adverse Cardiac Events Using Deep Learning-based Coronary Artery Disease Analysis at CT Angiography.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jin Young Kim, Kye Ho Lee, Ji Won Lee, Jiyong Park, Jinho Park, Pan Ki Kim, Kyunghwa Han, Song-Ee Baek, Dong Jin Im, Byoung Wook Choi, Jin Hur
{"title":"Predicting Major Adverse Cardiac Events Using Deep Learning-based Coronary Artery Disease Analysis at CT Angiography.","authors":"Jin Young Kim, Kye Ho Lee, Ji Won Lee, Jiyong Park, Jinho Park, Pan Ki Kim, Kyunghwa Han, Song-Ee Baek, Dong Jin Im, Byoung Wook Choi, Jin Hur","doi":"10.1148/ryai.240459","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To evaluate the predictive value of deep learning (DL)-based coronary artery disease (CAD) extent analysis for major adverse cardiac events (MACEs) in patients with acute chest pain presenting to the emergency department (ED). Materials and Methods This retrospective multicenter observational study included consecutive patients with acute chest pain who underwent coronary CT angiography (CCTA) at three institutional EDs from January 2018 to December 2022. Patients were classified as having no CAD, nonobstructive CAD, or obstructive CAD using a DL model. The primary outcome was MACEs during follow-up, defined as a composite of cardiac death, nonfatal myocardial infarction, and hospitalization for unstable angina. Cox proportional hazards regression models were used to evaluate the predictors of MACEs. Results The study included 408 patients (224 male; mean age, 59.4 ± 14.6 years). The DL model classified 162 (39.7%) patients as having no CAD, 94 (23%) as having nonobstructive CAD, and 152 (37.3%) as having obstructive CAD. Sixty-three (15.4%) patients experienced MACEs during follow-up. Patients with MACEs had a higher prevalence of obstructive CAD than those without (<i>P</i> < .001). In multivariate analysis model 1 (clinical risk factors), dyslipidemia (Hazard ratio [HR], 2.15 and elevated Troponin-T (HR 2.13) predicted MACEs (all <i>P</i> < .05). In model 2 (clinical risk factors + DL-based CAD extent), obstructive CAD detected by the DL model was the most significant independent predictor of MACEs (HR, 88.07, <i>P</i> < .001). Harrell's C-statistic showed that DL-based CAD extent enhanced the risk stratification beyond clinical risk factors (Harrell's C-statistics: 0.94 versus 0.80, <i>P</i> < .001). Conclusion DL-based detection of obstructive CAD demonstrated stronger predictive value than clinical risk factors for MACEs in patients with acute chest pain presenting to the ED. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240459"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate the predictive value of deep learning (DL)-based coronary artery disease (CAD) extent analysis for major adverse cardiac events (MACEs) in patients with acute chest pain presenting to the emergency department (ED). Materials and Methods This retrospective multicenter observational study included consecutive patients with acute chest pain who underwent coronary CT angiography (CCTA) at three institutional EDs from January 2018 to December 2022. Patients were classified as having no CAD, nonobstructive CAD, or obstructive CAD using a DL model. The primary outcome was MACEs during follow-up, defined as a composite of cardiac death, nonfatal myocardial infarction, and hospitalization for unstable angina. Cox proportional hazards regression models were used to evaluate the predictors of MACEs. Results The study included 408 patients (224 male; mean age, 59.4 ± 14.6 years). The DL model classified 162 (39.7%) patients as having no CAD, 94 (23%) as having nonobstructive CAD, and 152 (37.3%) as having obstructive CAD. Sixty-three (15.4%) patients experienced MACEs during follow-up. Patients with MACEs had a higher prevalence of obstructive CAD than those without (P < .001). In multivariate analysis model 1 (clinical risk factors), dyslipidemia (Hazard ratio [HR], 2.15 and elevated Troponin-T (HR 2.13) predicted MACEs (all P < .05). In model 2 (clinical risk factors + DL-based CAD extent), obstructive CAD detected by the DL model was the most significant independent predictor of MACEs (HR, 88.07, P < .001). Harrell's C-statistic showed that DL-based CAD extent enhanced the risk stratification beyond clinical risk factors (Harrell's C-statistics: 0.94 versus 0.80, P < .001). Conclusion DL-based detection of obstructive CAD demonstrated stronger predictive value than clinical risk factors for MACEs in patients with acute chest pain presenting to the ED. ©RSNA, 2025.

基于深度学习的冠状动脉疾病CT血管造影分析预测主要心脏不良事件。
“刚刚接受”的论文经过了全面的同行评审,并已被接受发表在《放射学:人工智能》杂志上。这篇文章将经过编辑,布局和校样审查,然后在其最终版本出版。请注意,在最终编辑文章的制作过程中,可能会发现可能影响内容的错误。目的评价基于深度学习(DL)的冠状动脉疾病(CAD)程度分析对急诊科(ED)急性胸痛患者重大不良心脏事件(mace)的预测价值。材料和方法本回顾性多中心观察性研究纳入了2018年1月至2022年12月在三家机构急诊科接受冠状动脉CT血管造影(CCTA)的急性胸痛患者。使用DL模型将患者分为无CAD、非阻塞性CAD和阻塞性CAD。主要终点为随访期间的mace,定义为心源性死亡、非致死性心肌梗死和因不稳定心绞痛住院的复合指标。采用Cox比例风险回归模型评价mace的预测因子。结果纳入408例患者,其中男性224例;平均年龄59.4±14.6岁)。DL模型将162例(39.7%)患者分类为无CAD, 94例(23%)为非阻塞性CAD, 152例(37.3%)为阻塞性CAD。随访期间63例(15.4%)患者出现mace。有mace的患者发生阻塞性CAD的比例高于无mace的患者(P < 0.001)。在多因素分析模型1(临床危险因素)中,血脂异常(危险比[HR]为2.15)和肌钙蛋白- t升高(危险比[HR]为2.13)预测mace(均P < 0.05)。在模型2(临床危险因素+ DL-based CAD程度)中,DL模型检测出的阻塞性CAD是mace最显著的独立预测因子(HR, 88.07, P < 0.001)。Harrell’s c -统计结果显示,基于dl的CAD程度增强了危险分层,超出了临床危险因素(Harrell’s c -统计值:0.94比0.80,P < 0.001)。结论基于dl的阻塞性CAD检测对急诊科急性胸痛患者mace的预测价值高于临床危险因素。©RSNA, 2025。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信