{"title":"Advancing wheat breeding using rye: a key contribution to wheat breeding history.","authors":"Guohao Han, Hanwen Yan, Lihui Li, Diaoguo An","doi":"10.1016/j.tibtech.2025.03.008","DOIUrl":null,"url":null,"abstract":"<p><p>Rye (Secale cereale L.), a close relative of wheat (Triticum aestivum L.), has significantly contributed to wheat breeding, exemplified by the global utilization of T1RS·1BL translocation lines. This highlights the strategic importance of integrating elite genes from related species into modern crop-breeding programs. This review explores the historical contributions of rye to wheat breeding and its potential in future applications. We delve into the impact of biotechnological approaches in unlocking the genetic repertoire of rye to bolster wheat improvement. Key strategies include goal-directed germplasm innovation, in-depth understanding of genetic basis, multi-omic big data and artificial intelligence (AI)-aided precision breeding, and strengthened global collaboration. These efforts are expected to maximize the potential of rye in sustainable wheat breeding.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.03.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rye (Secale cereale L.), a close relative of wheat (Triticum aestivum L.), has significantly contributed to wheat breeding, exemplified by the global utilization of T1RS·1BL translocation lines. This highlights the strategic importance of integrating elite genes from related species into modern crop-breeding programs. This review explores the historical contributions of rye to wheat breeding and its potential in future applications. We delve into the impact of biotechnological approaches in unlocking the genetic repertoire of rye to bolster wheat improvement. Key strategies include goal-directed germplasm innovation, in-depth understanding of genetic basis, multi-omic big data and artificial intelligence (AI)-aided precision breeding, and strengthened global collaboration. These efforts are expected to maximize the potential of rye in sustainable wheat breeding.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).