Muhammad Asif Khan, Hamid Menouar, Ridha Hamila, Adnan Abu-Dayya
{"title":"Crowd counting at the edge using weighted knowledge distillation.","authors":"Muhammad Asif Khan, Hamid Menouar, Ridha Hamila, Adnan Abu-Dayya","doi":"10.1038/s41598-025-90750-5","DOIUrl":null,"url":null,"abstract":"<p><p>Visual crowd counting has gained serious attention during the last couple of years. The consistent contributions to this topic have now solved several inherited challenges such as scale variations, occlusions, and cross-scene applications. However, these works attempt to improve accuracy and often ignore model size and computational complexity. Several practical applications employ resource-limited stand-alone devices like drones to run crowd models and require real-time inference. Though there have been some good efforts to develop lightweight shallow crowd models offering fast inference time, the relevant literature dedicated to lightweight crowd counting is limited. One possible reason is that lightweight deep-learning models suffer from accuracy degradation in complex scenes due to limited generalization capabilities. This paper addresses this important problem by proposing knowledge distillation to improve the learning capability of lightweight crowd models. Knowledge distillation enables lightweight models to emulate deeper models by distilling the knowledge learned by the deeper model during the training process. The paper presents a detailed experimental analysis with three lightweight crowd models over six benchmark datasets. The results report a clear significance of the proposed method supported by several ablation studies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11932"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90750-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Visual crowd counting has gained serious attention during the last couple of years. The consistent contributions to this topic have now solved several inherited challenges such as scale variations, occlusions, and cross-scene applications. However, these works attempt to improve accuracy and often ignore model size and computational complexity. Several practical applications employ resource-limited stand-alone devices like drones to run crowd models and require real-time inference. Though there have been some good efforts to develop lightweight shallow crowd models offering fast inference time, the relevant literature dedicated to lightweight crowd counting is limited. One possible reason is that lightweight deep-learning models suffer from accuracy degradation in complex scenes due to limited generalization capabilities. This paper addresses this important problem by proposing knowledge distillation to improve the learning capability of lightweight crowd models. Knowledge distillation enables lightweight models to emulate deeper models by distilling the knowledge learned by the deeper model during the training process. The paper presents a detailed experimental analysis with three lightweight crowd models over six benchmark datasets. The results report a clear significance of the proposed method supported by several ablation studies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.